Kinematic control of robot manipulators requires that joint mechanical limits are taken into account in order to avoid the interruption of the task at hand if joint limits are reached. A novel approach to this problem is presented and compared with state of the art techniques. The proposed control scheme allows to explicitly include in the specification of the task position, velocity and acceleration costraints for the joints. An application to an existing redundant arm is discussed and experimental results are presented.

1.
Allotta, B., Bioli, G., and Colla, V., 1996, “A Repeatable Control Scheme for Redundant Manipulators Observing Joint Mechanical Limits,” Proc. of Robotics Towards 2000: 27th Int. Sym. on Industrial Robots, pp. 521–526, Milan, Italy, October 6–8.
2.
Allotta, B., Bosio, L., Chiaverini, S., and Guglielmelli, E., 1993, “A redundant arm for the URMAD robot unit,” Proc. of 6th Int. Conf. on Advanced Robotics, pp. 655–660, Tokio, Japan, November 1–2.
3.
Chan
T. F.
, and
Dubey
R. V.
,
1995
, “
A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Joint Manipulators
,”
IEEE Trans. Rob. Autom.
, Vol.
11
, No.
2
, pp.
286
292
.
4.
Chiacchio
P.
,
Chiaverini
S.
,
Sciavicco
L.
, and
Siciliano
B.
,
1991
, “
Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy
,”
Int. J. Robot. Res.
, Vol.
10
, No.
4
, pp.
410
425
.
5.
Chiaverini
S.
,
1997
, “
Singularity-Robust Task-Priority Redundancy Resolution for Real-Time Kinematic Control of Robot Manipulators
,”
IEEE Trans. on Robotics and Automation
, Vol.
13
, No.
3
, pp.
398
410
.
6.
Chiaverini, S., Egeland, O., and Kanestro̸m, R. K., 1991, “Achieving user-defined accuracy with damped least-squares inverse kinematics,” Proc. 5th Int. Conf. Advanced Robotics (‘91 ICAR). Pisa, I., pp. 672–677, 1991.
7.
Dario
P.
,
Guglielmelli
E.
, and
Allotta
B.
,
1995
, “
Mobile robots aid the disabled
,”
Service Robots
, Vol.
1
, No,
1
, pp.
14
18
.
8.
Denavit
J.
, and
Hartenberg
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanism Based on Matrices
,”
ASME Journal of Applied Mechanics
, Vol.
22
, pp.
215
221
.
9.
Egeland
O.
,
1987
, “
Task-space tracking with redundant manipulators
,”
IEEE Journal of Robotics and Automation
, Vol.
3
, No.
5
, pp.
471
475
.
10.
Klein
C. A.
, and
Kittivatcharapong
S.
,
1990
, “
Optimal Force Distribution for the Legs of a Walking Machine with Friction Cone Constraints
,”
IEEE Trans. Rob. Autom.
, Vol.
6
, No.
1
, pp.
73
85
.
11.
Klein
C. A.
, and
Huang
C. H.
,
1983
, “
Review of pseudoinverse control for use with kinematically redundant manipulators
,”
IEEE Trans. Sys., Man, Cybern.
, Vol.
13
, No.
3
, pp.
245
250
.
12.
Lie´geois
A.
,
1977
, “
Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms
,”
IEEE Trans. on Systems, Man and Cybernetics
, Vol.
7
, No.
12
, pp.
868
871
.
13.
Luemberger, D. G., 1984, Linear and Nonlinear Programming, Addison-Wesley Publishing Company, Reading, Massachusetts.
14.
Maciejewski
A. A.
, and
Klein
C. A.
,
1985
, “
Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments
,”
Int. Jour. Robotics Research
, Vol.
4
, No.
3
, pp.
109
117
.
15.
Maciejewski
A. A.
, and
Klein
C. A.
,
1988
, “
Numerical filtering for the operation of robotic manipulators through kinematically singular configurations
,”
Jour. Robotic Systems
, Vol.
5
, pp.
527
552
.
16.
Nakamura
Y.
, and
Hanafusa
H.
,
1986
, “
Inverse kinematic solutions with singularity robustness for robot manipulator control
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
108
, pp.
163
171
.
17.
Rosen
J. B.
,
1960
, “
The Gradient Projection Method for Nonlinear programming Part I, Linear Constraints
,”
SIAM Jour. Appl. Math.
, Vol.
8
, pp.
181
217
.
18.
Sciavicco, L., and Siciliano, B., 1986, “Solving the Inverse Kinematic Problem for Robotic Manipulators,” Proc. 6th CISM-IFToMM Ro. Man. Syst. Cracow, Poland, Sept.
19.
Sciavicco, L., and Siciliano, B., 1996, Modelling and Control of Robot Manipulators, McGraw-Hill, New York, NY.
20.
Seraji, H., 1989, “Configuration Control of Redundant Manipulators: Theory and Implementation,” IEEE Trans. Rob. Autom., Vol. 5, No. 4.
21.
Seraji, H., Long, M. K., and Lee, T. S., 1993, “Motion Control of 7-DOF ARMS: The Configuration Control Approach,” IEEE Trans. Rob. Autom., Vol. 9, No. 2.
22.
Seraji
H.
, and
Colbaugh
R.
,
1990
, “
Improved Configuration Control for Redundant Robots
,”
Jour. Robotic Systems
, Vol.
7
, No,
6
, pp.
897
928
.
23.
Wampler
C. W.
,
1986
, “
Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods
,”
IEEE Trans. Sys., Man, Cybern.
, SMC-
16
,
1
,
93
101
.
24.
Yoshikawa
T.
,
1985
, “
Manipulability of Robot Mechanisms
,”
Int. Jour. Robotics Research
, Vol.
4
,
No
. 2, pp.
3
9
.
This content is only available via PDF.
You do not currently have access to this content.