The creation of templates for uncertain plants is an essential first step in Quantitative Feedback Theory (QFT) and other frequency domain methods. For plants with structured parametric uncertainty it is shown that the boundaries of templates can only be generated by the edges of the uncertain parameter set and particular critical interior points. A method to identify these critical interior points is presented. With the help of symbolic computation, a computationally tractable procedure for generating the templates is developed. The procedure is illustrated with an example of a vehicle clutch system where the uncertain parameters perturb the plant nonlinearly.

1.
Anderson
B. D. O.
,
Kraus
F.
,
Mansour
M.
, and
Dasgupta
S.
,
1995
, “
Easily testable sufficient conditions for the robust stability of systems with multilinear parameter dependence
,”
Automatica
, Vol.
31
(
1
), pp.
25
40
.
2.
Bailey
F. N.
, and
Hui
C. H.
,
1989
, “
A fast algorithm for computing parametric rational functions
,”
IEEE Trans. on Automatic Control
, Vol.
34
(
11
), pp.
1209
1212
.
3.
Ballance
D. J.
,
1992
,
Comments on the papers “A new approach to optimum loop synthesis” and “On the determination of plant variation bounds for optimum loop synthesis
,”
Int. J. Control
, Vol.
55
(
1
), pp.
241
248
.
4.
Ballance, D. J., and G. Hughes, 1996, “Template generation methods for quantitative feedback theory,” Proceedings of the UKACC Conference “Control ’96”, Institution of Electrical Engineers. Exeter, U.K. pp. 172–174.
5.
Bartlett
A. C.
,
1993
, “
Computation of the frequency response of systems with uncertain parameters: a simplification
,”
Int. J. Control
, Vol.
57
, pp.
1293
1309
.
6.
Bhattacharyya, S. P., H. Chapellat and L. H. Keel, 1995, Robust Control: The Parametric Approach, Prentice Hall.
7.
Borghesani, C., Y. Chait, and O. Yaniv, 1995, Quantitative Feedback Theory Toolbox User Manual, The Math Work Inc.
8.
East
D. J.
,
1982
, “
On the determination of plant variation bounds for optimum loop synthesis
,”
Int. J. Control
, Vol.
35
(
5
), pp.
891
908
.
9.
Fu
M.
,
1990
, “
Computing the frequency response of linear systems with parametric perturbation
,”
Systems & Control Letters
, Vol.
15
, pp.
45
52
.
10.
Gutman
Pet-Olof
,
Baril
Claudio
and
Neumann
Linda
,
1994
, “
An algorithm for computing value sets of uncertain transfer functions in factored real form
,”
IEEE Trans. on Automatic Control
, Vol.
39
(
6
), pp.
1268
1273
.
11.
Horowitz, I. M., 1992, Quantitative Feedback Design Theory (QFT), Vol. 1. QFT Publications, Boulder, CO. 80303.
12.
Keel, L. H., and S. P. Bhattacharyya, 1991, “Frequency domain design of interval controllers,” Control of Uncertain Dynamic Systems. CRC Press, Littleton, MA. pp. 423–438.
13.
Keel
L. H.
, and
Bhattacharyya
S. P.
,
1994
, “
Robust parametric classical control design
,”
IEEE Trans. on Automatic Control
, Vol.
39
, pp.
1524
1530
.
14.
Kraus
F. J.
,
Anderson
B. D. O.
, and
Mansour
M.
,
1989
, “
Robust stability of polynomials with multilinear parameter dependence
,”
Int. J. Control
, Vol.
50
(
5
), pp.
1745
1762
.
15.
Rodrigues
J. M.
,
Chait
Y.
, and
Hollot
C. V.
,
1997
, “
An efficient algorithm for computing QFT bounds
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
119
(
3
), pp.
548
552
.
16.
Slicker
James M.
, and
Loh
Robert N. K.
,
1996
, “
Design of robust vehicle launch control system
,”
IEEE Transactions on Control Systems Technology
, Vol.
4
(
4
), pp.
326
335
.
17.
Tesi, A., and A. Vicino, 1991, “Kharitonov segments suffice for frequency response analysis of interval plant-controller families,” Control of Uncertain Dynamic Systems, CRC Press, Littleton, MA. pp. 403–415.
18.
Zeheb
E.
,
1990
, “
Necessary and sufficient conditions for robust stability of a continuous systems—the continuous dependency case illustrated via multilinear dependency
,”
IEEE Transactions on Circuits and Systems
, Vol.
37
(
1
), pp.
47
53
.
19.
Zeheb
E.
, and
Walach
E.
,
1981
, “
Zero sets of multiparameter functions and stability of multidimensional systems
,”
IEEE Transactions on Acoustics, Speed, and Signal Processing
, Vol.
29
(
2
), pp.
197
206
.
This content is only available via PDF.
You do not currently have access to this content.