A method for tracking control of mechanical systems based on artificial neural networks is presented. The controller consists of a proportional plus derivative controller and a two-layer feedforward neural network. It is shown that the tracking error of the closed-loop system goes to zero while the control effort is minimized. Tuning of the neural network’s weights is formulated in terms of a constrained optimization problem. The resulting algorithm has a simple structure and requires a very modest computation effort. In addition, the neural network’s learning procedure is implemented on-line.

1.
Canudas, de Witt C., Siciliano, B., and Bastin, G., 1996, Theory of Robot Control, Springer-Verlag, London.
2.
Carelli
R.
,
Camacho
E. F.
, and
Patifio
D.
,
1995
, “
A Neural Network Based Feedforward Adaptive Controller for Robots
,”
IEEE Transactions on Systems, Man, and Cybernetics
, Vol.
25
, No.
9
, pp.
1281
1287
.
3.
Chernousko, F. L., 1993, “The Decomposition of Controlled Dynamic Systems,” Advances in Nonlinear Dynamics and Control: A Report from Russia, A. B. Kurzhanski, ed., Birhauser, Boston, pp. 1–40.
4.
Corless
M.
,
1993
, “
Control of Uncertain Nonlinear Systems
,”
Trans. ASME
, Vol.
115
, pp.
362
372
.
5.
Cybenko
G.
,
1989
, “
Approximation by Super-Position of a Sigmoidal Functions
,”
Math. of Control, Signals and Systems
, Vol.
2
, pp.
303
314
.
6.
Decarlo
R. A.
,
Zak
S. H.
, and
Matthews
G. P.
,
1988
, “
Variable Structure Control of Nonlinear Multivariable Systems
,”
IEEE Proc.
, Vol.
76
, No.
3
, pp.
212
232
.
7.
Efrati, T., 1997, Traking Control of Mechanical Systems Using Artificial Neural Networks, Ph.D. dissertation, University of Southern California.
8.
Hassoum, M. H., 1995, Fundamentals of Artificial Neural Networks, MIT Press.
9.
Ioannou, P. A., Sun, J., 1996, Robust Adaptive Control, Prentice Hall.
10.
Jung
S.
, and
Hsia
T. C.
,
1995
, “
A New Neural Network Control Technique for Robot Manipulators
,”
Robotica
, Vol.
13
, pp.
477
484
.
11.
Khemaissia
S.
, and
Morris
A. S.
,
1993
, “
Neuro-Adaptive Control for Robotic Manipulators
,”
Robotica
, Vol.
11
, pp.
465
473
.
12.
Krstic, M., Kanellakopoulos, I., and Kokotovic, P., 1995, Nonlinear and Adaptive Control Design, John Wiley.
13.
Lewis, F. L., Abdallah, C. T., and Dawson, D. M., 1993, Control of Robot Manipulators, Macmillan.
14.
Lewis
F. L.
,
Liu
K.
, and
Yesildirek
A.
,
1995
, “
Neural Nets robot controller with Guaranteed Tracking Performance
,”
IEEE Transactions on Neural Networks
, Vol.
6
, No.
3
, pp.
703
715
.
15.
Lewis
F. L.
,
Liu
K.
,
Yesildirek
A.
, and
Liu
K.
,
1996
, “
Multilayer Neural Net Robot Controller with Guaranteed Tracking Performance
,”
IEEE Transactions on Neural Networks
, Vol.
7
, No.
2
, pp.
388
399
.
16.
Morris
A. S.
, and
Khemaissia
S.
,
1995
, “
Stable and Fast Neurocontroller for Robot Arm Movement
,”
IEE Proc.-Control Theory Appl.
, Vol.
142
, No.
4
, pp.
378
384
.
17.
Narendra
K. S.
, and
Parthasarathy
K.
,
1991
, “
Gradient Methods for the Optimization of Dynamical Systems Containing Neural Networks
,”
IEEE Transactions on Neural Networks
, Vol.
2
, pp.
252
262
.
18.
Narendra
K. S.
, and
Parthasarathy
K.
,
1990
, “
Identification and Control of Dynamical Systems Using Neural Networks
,”
IEEE Transactions Neural Networks
, Vol.
1
, pp.
4
27
.
19.
Sanner
R. M.
, and
Slotine
J-J. E.
,
1995
, “
Stable Adaptive Control of Robot Manipulators Using Neural Networks
,”
Neural Computation
, Vol.
7
, pp.
753
790
.
20.
Slotine
J-J. E.
, and
Li
W.
,
1988
, “
Adaptive Manipulator Control: A Case Study
,”
IEEE Trans. on Auto. Control
, Vol.
33
, No.
11
, pp.
995
1003
.
21.
Spong, E., and Vidyasgar, M., 1989, Robot Dynamics and Control, John Wiley.
This content is only available via PDF.
You do not currently have access to this content.