In this paper, the inverse kinematics and the foot force distributions of a planetary gear type quadrupedal walking machine are analyzed. This walking machine has four legs and each leg has three-degrees-of-freedom. The whole system has a total of seventeen links. The planetary gear leg is designed for a quadruped which can walk and trot under the following design criteria: high efficiency, compact size, and high payload/weight ratio. A neural network structure fuzzy logic controller is applied to control the foot force distribution of the quadruped walking machine. The performance of this fuzzy logic control algorithm is evaluated. Experimental results show that the fuzzy logic controller is effective in controlling this walking machine.

1.
Lin
B. S.
and
Song
S. M.
, “
Dynamic Modeling, Stability and Energy Efficiency of a Quadrupedal Walking Machine
,”
IEEE Int. Conf. on Robotics and Automation
, Vol.
3
, pp.
367
373
,
1993
.
2.
N. X. Chen and S. M. Song, “Optimal Synthesis and Analysis of a New Leg Mechanism: The Planetary Gear Leg,” Proc. of 1992 ASME Mechanisms Conf: Robotics, Spatial Mechanisms, and Mechanical Systems, ASME DE-Vol. 45, pp. 155–161, Tempe, Arizona, Sept. 1992.
3.
Dubowski
S.
and
DesForges
D. T.
, “
The Application of Model-Referenced Adaptive Control to Robotic Manipulators
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
101
, pp.
193
200
,
1979
.
4.
Koivo
A. J.
and
Guo
T. H.
, “
Adaptive Linear Controller for Robotic Manipulators
,”
IEEE Trans. Automatic Control
, Vol.
AC-29
, pp.
837
840
,
1984
.
5.
Miller
W. T.
, “
Real-Time Neural Network Control of a Biped Walking Robot
,”
IEEE Control Systems Magazine
, Vol.
14
, No.
1
, pp.
41
48
,
1994
.
6.
Mamdani
E. H.
and
Assilian
S.
, “
An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller
,”
Int. J. Man-Machine Studies
, Vol.
7
, pp.
1
13
,
1975
.
7.
Dodds
David R.
, “
Fuzziness in Knowledge-Based Robotics Systems
,”
Fuzzy Sets and Systems
, Vol.
26
, pp.
179
193
,
1988
.
8.
DeYong
M.
,
Polson
J.
,
Moore
R.
,
Weng
C. C.
and
Lara
J.
, “
Fuzzy and Adaptive Control Simulations for a Walking Machine
,”
IEEE Control Systems Magazine
, Vol.
12
, No.
3
, pp.
43
50
,
1992
.
9.
Lee
J. K.
and
Song
S. M.
, “
A Study of Instantaneous Kinematics of Walking Machines
,”
Int. J. of Robotics and Automation
, Vol.
5
, No.
3
, pp.
131
138
,
1990
.
10.
Tsai
C. R.
,
Lee
T. T.
and
Song
S. M.
, “
Fuzzy Logic Control of a Planetary Gear Type Walking Machune Leg
,”
Robotica
, Vol.
15
,
1997
, pp.
533
546
.
11.
Waldron
K. J.
, “
Force and Motion Management in Legged Locomotion
,”
IEEE J. of Robotics and Automation
, Vol.
RA-2
, No.
4
, pp.
214
220
, Dec.
1986
.
12.
Yoichi Hori, Koji Shimura and Masayoshi Tomizuka, “Position/Force Control of Multi-Axis Robot Manipulator based on the TDOF Robust Servo Controller for Each Joint,” Proc. of American Control Conference, pp. 753–757, 1992.
13.
S. Z. He, S. H. Tan, C. C. Hang and P. Z. Wang, “Design of an On-line Rule-adaptive Fuzzy Control System,” IEEE Int. Conference on Fuzzy System, pp. 83–91, 1992.
14.
Lin
C. T.
,
Lin
C. J.
and
Lee
C. S. G.
, “
Fuzzy Adaptive Learning Control Network with On-Line Neural Learning
,”
Fuzzy Sets and systems
, Vol.
71
, pp.
25
45
,
1995
.
15.
Carpenter
G. A.
,
Grossberg
S.
and
Rosen
D. B.
, “
Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System
,”
Neural Networks
, Vol.
4
, pp.
759
771
,
1991
.
16.
J. S. Albus, “A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller,” ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL, pp. 220–227, Sept. 1975.
17.
Lehtinen
H.
, “
Force Control for Walking on Soft Terrian
,”
Robotica
, Vol.
14
, pp.
165
172
,
1996
.
18.
Adachi
H.
,
Koyachi
N.
and
Nakano
E.
, “
Machanism and Control of a Quadruped Walking Robot
,”
IEEE Control System Magazine
, Vol.
8
, No.
5
, pp.
14
19
,
1988
.
19.
McGhee
R. B.
and
Iswandhi
G. I.
, “
Adaptive Locomotion of a Multilegged Rover Over Rough Terrians
,”
IEEE Trans. on Systems, Man, and Cybernatics
, Vol.
SMC-9
, No.
4
, pp.
176
185
,
1979
.
20.
Hirose
S.
, “
A Study of Design and Control of a Quadruped Walking Vehicle
,”
Int. J. of Robotics Research
, Vol.
3
, No.
2
, pp.
113
133
,
1984
.
21.
Lee
T. T.
and
Shih
C. L.
, “
Real Time Computer Control of a Quadruped Walking Robot
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
108
, pp.
346
353
,
1996
.
22.
Lee
T. T.
and
Shih
C. L.
, “
A Study of the Gait Control of a Quadruped Walking Vehicle
,”
IEEE J. of Robotics and Automation
, Vol.
RA-2
, No.
2
, pp.
61
69
,
1986
.
23.
Hogan
N.
, “
Impedance Control: An Approach to Manipulation
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
107
, pp.
1
24
,
1985
.
24.
R. B. McGhee and D. E. Orin, “A Mathematical Programming Approach to Control of Joint Positions and Torques in Legged Locomotion Systems,” Proc. ROMANSY-76 Symp., Warsaw, Poland, Sept. 1976.
25.
Orin
D. E.
and
Oh
S. Y.
, “
Control of Force Distribution in Robotic Mechanisms Containing Closed Kinematic Chains
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
102
, pp.
134
141
,
1981
.
26.
Klein
C. A.
,
Olson
K. W.
and
Pugh
D. R.
, “
Use of Force and Attitude Sensors for Locomotion of a Legged Vehicle over Irregular Terrain
,”
Int. J. of Robotics Research
, Vol.
2
, No.
2
, pp.
3
17
,
1983
.
27.
Klein
C. A.
and
Kittivatcharapong
S.
, “
Optimal Force Distribution for the Legs of a Walking Machine with Friction Cone Constraints
,”
IEEE Trans. on Robotics nd Automation
, Vol.
6
, No.
1
, pp.
73
85
,
1990
.
28.
Gorinevsky
D. M.
and
Shneider
A. Yu.
, “
Force Control in Locomotion of Legged Vehicles over Rigid and Soft Surfaces
,”
Int. J. of Robotics Research
, Vol.
9
, No.
2
, pp.
4
23
,
1990
.
29.
K. Yoneda, H. liyama and S. Hirose, “Sky-Hook Suspension Control of a Quadruped Walking Vehicle,” IEEE Int. Conf. on Robotics and Automation, pp. 999–1004, 1994.
30.
Liu
H.
and
Wen
B.
, “
Force Distribution for the Legs of a Quadruped Walking Vehicle
,”
J. of Robotic Systems
, Vol.
14
, No.
1
, pp.
1
8
,
1997
.
31.
Lin
Y.
and
Song
S. M.
, “
A CMAC Neural-Network-Based Algorithm for the Kinematic Control of a Walking Machine
,”
Engineering Applications of Artificial Intelligence
, Vol.
5
, No.
6
, pp.
539
551
,
1992
.
32.
A. Guez and J. W. Selinsky, “A Neurocontroller with Guaranteed Performance for Rigid Robots,” Proc. of Int. Joint Conf. on Neural Networks, Vol. 2, pp. 347–351, 1990.
33.
Kung
S. Y.
and
Hwang
J. N.
, “
Neural Network Architectures for Robotics Applications
,”
IEEE Trans. on Robotics nd Automation
, Vol.
5
, No.
5
, pp.
641
657
,
1989
.
34.
Miller
W. T.
,
Hewes
R. P.
,
Glanz
F. H.
and
Kraft
L. G.
, “
Real-Time Dynamic Control of an Industrial Munipultor Using a Neural-Network Based Learning Controller
,”
IEEE Trans. on Robotics nd Automation
, Vol.
6
, No.
1
, pp.
1
9
,
1990
.
35.
Yager
R. R.
, “
Implementing Fuzzy Logic Controller Using a Neural Network
,”
Fuzzy Sets and Systems
, Vol.
48
, pp.
53
64
,
1992
.
36.
D. Nauck and R. Kruse, “A Fuzzy Neural Network Learning Fuzzy Control Rules and Membership Functions by Fuzzy Error Backpropagation,” Proc. IEEE Int. Conf. on Neural Networks, pp. 1022–1027, 1993.
37.
Lin
C. T.
and
Lee
C. S. G.
, “
Neural-Network-Based Fuzzy Logic Control and Decision System
,”
IEEE Trans. on Computers
, Vol.
40
, No.
12
, pp.
1320
1360
,
1991
.
This content is only available via PDF.
You do not currently have access to this content.