This paper presents a new design method of discrete-time model reference adaptive control for nonminimum phase systems with disturbances. It is assumed that the disturbances are described by a polynomial function of time with known degree and unknown coefficients. The proposed scheme uses only input and output data and the existence of bounds for all signals is proved, which assures the output error convergence to zero. Finally, the results of computer simulation are presented to illustrate the effectiveness of the proposed method.

1.
Allidina
A. Y.
, and
Hugnes
F. M.
,
1980
, “
Generalized Self-Tuning Controller With Pole Assignment
,”
IEE Proceedings-D
, Vol.
127
, pp.
13
18
.
2.
A˚stro¨m, K. J., 1980, “Direct Method for Nonminimum Phase System,” Proc. of 19th IEEE CDC, Albuquerque, pp. 611–615.
3.
De la Sen
M.
,
1990
, “
Energy Balances in Dynamic Systems in the Presence of Unmodelled Dynamics by Using Specifications in the Frequency Domain
,”
IEE Proceedings-D
, Vol.
137
, No.
1
, pp.
41
48
.
4.
Francis, B. A., 1987, A Course in H Control Theory, Springer-Verlag.
5.
Goodwin
G. C.
,
Ramadge
P. J.
, and
Caines
P. E.
,
1980
, “
Discrete-Time Multivariable Adaptive Control
,”
IEEE Trans. Autom. Contr.
, Vol.
25
, pp.
449
456
.
6.
Goodwin
G. C.
, and
Sin
K. S.
,
1981
, “
Adaptive Control of Nonminimum Phase Systems
,”
IEEE Trans. Autom. Contr.
, Vol.
26
, pp.
478
482
.
7.
Lu, J., and Yahagi, T., 1992, “A New Design Method for Nonminimum Phase MRACS in the Presence of Disturbances,” IEEE International Symposium on Industrial Electronics, Xian, China, pp. 107–111
8.
Lu
J.
, and
Yahagi
T.
,
1993
, “
Self-Tuning Control of Nonminimum Phase Systems Based on Pole-Zero Placement Using Approximate Inverse Systems
,”
Electronics Letters
, Vol.
29
, pp.
90
91
.
9.
Lu
J.
, and
Yahagi
T.
,
1993
, “
New Design Method for Model Reference Adaptive Control for Nonminimum Phase Discrete-Time Systems with Disturbances
,”
IEE Proceedings-D
, Vol.
140
, No.
1
, pp.
34
40
.
10.
Ljung
L.
,
1977
, “
Analysis of Recursive Stochastic Algorithms
,”
IEEE Trans. Autom. Contr.
, Vol.
22
, pp.
551
575
.
11.
Narendra
K. S.
, and
Valavani
L. S.
,
1978
, “
Stable Adaptive Controller Design-Direct Control
,”
IEEE Trans. Autom. Contr.
, Vol.
23
, pp.
570
583
.
12.
Peterson
B. B.
, and
Narendra
K. S.
,
1982
, “
Bounded Error Adaptive Controller
,”
IEEE Trans. Autom. Contr.
, Vol.
27
, pp.
1161
1168
.
13.
Perng
M. H.
, and
Pan
K. C.
,
1995
, “
Robust Performance Design of Multivariable Control Systems
,”
IEE Proceedings-D
, Vol.
142, 1
, pp.
7
14
.
14.
Sebakyh
O. A.
, and
Salama
A. I. A.
,
1982
, “
Adaptive Control of Linear Plants with Step Disturbances
,”
International Journal of Control
, Vol.
36
, No.
2
, pp.
235
247
.
15.
Yahagi, T., 1985, 1986, Theory of Digital Signal Processing, Vols. 1–3, Corona Pub. Co., Ltd., Tokyo.
16.
Yahagi
T.
, and
Lu
J.
,
1993
, “
On Self-Tuning Control of Nonminimum Phase Discrete-Time Systems Using Approximate Inverse Systems
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
115
, pp.
12
18
;
This content is only available via PDF.
You do not currently have access to this content.