A wide range of engineering problems involve porous media modeling. General porous media models are highly nonlinear, geometrically complex, and must account for energy transfer between fluid and solid constituents normally modeled in distinct Lagrangian and Eulerian reference frames. Combining finite element discretization techniques with bond graph methods greatly simplifies the model formulation process, as compared to alternative schemes based on weighted residual solutions of the governing partial differential equations. The result generalizes existing numerical models of porous media and current network thermodynamics/bond graph theory.

1.
Advani
S. H.
,
Lee
T. S.
,
Lee
J. K.
, and
Kim
C. S.
,
1993
, “
Hygrothermomechanical Evaluation of Porous Media Under Finite Deformation; Part I—Finite Element Formulations
,”
International Journal for Numerical Methods in Engineering
, Vol.
36
, pp.
147
160
.
2.
Auslander, D. M., Oster, G. F., Perelson, A., and Clifford, G., 1972, “On Systems With Coupled Chemical Reaction and Diffusion,” ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL, Sept., pp. 239–248.
3.
Bathe, K.-J., 1982, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, NJ.
4.
Beaman
J. J.
,
1985
, “
A Dynamic Model of a Pressure Swing Oxygen Generation System
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
107
, pp.
111
116
.
5.
Becker, E. B., Carey, G. F., and Oden, J. T., 1981, Finite Elements, An Introduction: Volume 1, Prentice-Hall, Englewood Cliffs, New Jersey.
6.
Biot
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
Journal of Applied Physics
, Vol.
12
, pp.
155
164
.
7.
Biot
M. A.
,
1956
, “
Theory of Deformation of a Porous Viscoelastic Anisotropic Solid
,”
Journal of Applied Physics
, Vol.
27
, No.
5
, pp.
459
467
.
8.
Biot
M. A.
,
1957
, “
The Elastic Coefficients of the Theory of Consolidation
,”
ASME Journal of Applied Mechanics
, Vol.
24
, pp.
594
601
.
9.
Borja
R. I.
, and
Alarcon
E.
,
1995
, “
A mathematical framework for finite strain elastoplastic consolidation; Part I: Balance laws, variational formulation, and linearization
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
122
, pp.
145
171
.
10.
Bowen
R. M.
,
1982
, “
Compressible Porous Media Models by Use of the Theory of Mixtures
,”
International Journal of Engineering Science
, Vol.
20
, No.
6
, pp.
697
735
.
11.
Bowen, R. M., 1989, Introduction to Continuum Mechanics for Engineers, Plenum Press, New York.
12.
Bowen, R. M., and Wang, C.-C., 1976, Introduction to Vectors and Tensors, Plenum Press, New York.
13.
Breedveld
P. C.
,
1982
, “
Proposition for an Unambiguous Vector Bond Graph Notation
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
104
, pp.
267
270
.
14.
Brodland
G. W.
, and
Clausi
D. A.
,
1994
, “
Embryonic Tissue Morphogenesis Modeled by FEM
,”
ASME Journal of Biomechanical Engineering
, Vol.
116
, pp.
146
155
.
15.
Budge
K. G.
, and
Peery
J. S.
,
1993
, “
RHALE: a MMALE shock physics code written in C++
,”
International Journal of Impact Engineering
, Vol.
14
, pp.
107
120
.
16.
Carey, G. F., and Oden, J. T., 1984, Finite Elements: Computational Aspects, Prentice-Hall, Englewood Cliffs, NJ.
17.
Carey, G. F., and Oden, J. T., 1986, Finite Elements: Fluid Mechanics, Prentice-Hall, Englewood Cliffs, NJ.
18.
Cheng
A. H.-D.
, and
Liggett
J. A.
,
1984
, “
Boundary Integral Equation Method for Linear Porous-Elasticity with Applications to Soil Consolidation
,”
International Journal for Numerical Methods in Engineering
, Vol.
20
, pp.
255
278
.
19.
Davis, J. L., 1988, Wave Propagation in Solids and Fluids, Springer-Verlag, New York.
20.
Diller
K. R.
,
Beaman
J. J.
,
Montoya
J. P.
, and
Breedveld
P. C.
,
1988
, “
Network Thermodynamic Modeling With Bond Graphs for Membrane Transport During Cell Freezing Procedures
,”
ASME Journal of Heat Transfer
, Vol.
110
, pp.
938
945
.
21.
Drumheller
D. S.
,
1987
, “
A Theory for Dynamic Compaction of Wet Porous Solids
,”
International Journal of Solids and Structures
, Vol.
23
, No.
2
, pp.
211
237
.
22.
Ewing
R. P.
, and
Gupta
S. C.
,
1994
, “
Pore-Scale Network Modeling of Compaction and Filtration during Surface Sealing
,”
Soil Sci. Soc. Am. J.
, Vol.
58
, pp.
712
720
.
23.
Fahrenthold
E. P.
, and
Venkataraman
M.
,
1994
, “
Anisotropic Damage Models for Coupled Solid Dynamics and Heat Diffusion
,”
Composites Engineering
, Vol.
4
, No.
9
, pp.
913
930
.
24.
Fahrenthold
E. P.
, and
Venkataraman
M.
,
1996
, “
Eulerian Bond Graphs for Fluid Continuum Dynamics Modeling
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
118
, No.
1
, pp.
48
57
.
25.
Fahrenthold
E. P.
, and
Wargo
J. D.
,
1994
, “
Lagrangian Bond Graphs for Solid Continuum Dynamics Modeling
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
116
, pp.
178
192
.
26.
Fritts, M. J., Crowley, W. P., and Trease, H. E., eds., 1985, The Free-Lagrange Method, Springer-Verlag, New York, NY.
27.
Gajo
A.
,
Saetta
A.
, and
Vitaliani
R.
,
1994
, “
Evaluation of Three- and Two-Field Finite Element Methods for the Dynamic Response of Saturated Soil
,”
International Journal for Numerical Methods in Engineering
, Vol.
37
, pp.
1231
1247
.
28.
Gencer
C. S.
, and
Ikoku
C. U.
,
1984
, “
Well Test Analysis for Two-Phase Flow of Non-Newtonian Power Law and Newtonian Fluids
,”
ASME Journal of Energy Resources Technology
, Vol.
106
, pp.
295
305
.
29.
Hairer, E., Lubich, C. and Roche, M., 1989, The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods, Springer-Verlag, New York.
30.
Hines, A. L., and Maddox, R. N., 1985, Mass Transfer: Fundamentals and Applications, Prentice-Hall, Englewood Cliffs, NJ.
31.
Hughes, T. J. R., Hauke, G., and Jansen, K., 1993, “Some Current Developments in Stabilized Finite Element Methods for Computational Fluid Dynamics,” Abstracts of the Second U.S. National Congress on Computational Mechanics, ed. A. K. Noor, August 16–18, Washington, D.C.
32.
Ingrim
M. E.
, and
Masada
G. Y.
,
1988
, “
Bond Graph Representation of Thermomechanical Processes in One-Dimensional Thermoelastic Continua
,”
Automated Modeling for Design
, ASME DSC Vol.
8
, pp.
1
8
.
33.
Ingrim
M. E.
, and
Masada
G. Y.
,
1991
, “
Extended Bond Graph Representation of the Traction Problem in Linear Elastodynamics
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
113
, pp.
118
121
.
34.
Johnson
G. J.
, and
Stryk
R. A.
,
1987
, “
Eroding Interface and Improved Tetrahedral Element Algorithms for High-Velocity Impact Computations in Three Dimensions
,”
International Journal of Impact Engineering
, Vol.
5
, pp.
411
421
.
35.
Karnopp
D. C.
,
1979
, “
Bond Graphs in Control: Physical State Variables and Observers
,”
Journal of the Franklin Institute
, Vol.
308
, No.
3
, pp.
219
234
.
36.
Karnopp, D. C., Margolis, D. L., and Rosenberg, R. C., 1990, System Dynamics: A Unified Approach, Wiley, New York, NY.
37.
Liggett, J. A., and Liu, P. L.-F., 1983, The Boundary Integral Equation Method for Porous Media Flow, George Allen and Unwin, Ltd., London.
38.
Mikulecky, D. C., 1993, Applications of Network Thermodynamics to Problems in Biomedical Engineering, New York University Press, New York, NY.
39.
Montbrud-Di Filippo
J. M.
,
Delgado
M.
,
Brie
C.
, and
Paynter
H. M.
,
1991
, “
A Survey of Bond Graphs: Theory, Applications, and Programs
,”
Journal of the Franklin Institute
, Vol.
328
, No.
5/6
, pp.
565
606
.
40.
Otis, D. R., 1970, “Thermal Damping in Gas-Filled Composite Materials During Impact Loading,” ASME Journal of Applied Mechanics, March, pp. 38–43.
41.
Ruan
J. S.
,
Khalil
T.
, and
King
A. I.
,
1994
, “
Dynamic Response of the Human Head to Impact by Three-Dimensional Finite Element Analysis
,”
ASME Journal of Biomechanical Engineering
, Vol.
116
, pp.
44
50
.
42.
Schreuders
P. D.
,
Diller
K. R.
,
Beaman
J. J.
, and
Paynter
H. M.
,
1994
, “
An Analysis of Coupled Multicomponent Diffusion in Interstitial Tissue
,”
ASME Journal of Biomechanical Engineering
, Vol.
116
, pp.
164
171
.
43.
Stasa, F. L., 1985, Applied Finite Element Analysis for Engineers, Holt, Reinhart, and Winston, New York.
44.
Steele
D. D.
, and
Nieber
J. L.
,
1994
, “
Network Modeling of Diffusion Coefficients for Porous Media: I. Theory and Model Development
,”
Soil Sci. Soc. Am. J
, Vol.
58
, pp.
1337
1345
.
45.
Suh
J.-K.
, and
Spilker
R. L.
,
1994
, “
Indentation Analysis of Biphasic Articular Cartilage: Nonlinear Phenomena Under Finite Deformation
,”
ASME Journal of Biomechanical Engineering
, Vol.
116
, pp.
1
9
.
46.
Thoma
J.
, and
Atlan
H.
,
1985
, “
Osmosis and Hydraulics by Network Thermo-dynamics and Bond Graphs
,”
Journal of the Franklin Institute
, Vol.
319
, No.
1/2
, pp.
217
226
.
47.
Venkataraman, M., 1995, “System Dynamics Modeling of Nonlinear Solid, Fluid, and Porous Media,” PhD dissertation, University of Texas, Austin, Texas.
48.
Zienkiewicz, O. C., and Taylor, R. L., 1989, The Finite Element Method (Volume I), McGraw-Hill, New York, NY.
This content is only available via PDF.
You do not currently have access to this content.