Robust stability of perturbed nonlinear feedback systems subjected to plant variations is investigated by using the direct method of Lyapunov. To establish the stability of the nominal system, the multivariable Popov criterion is utilized first. Then the stability of the system with parameter deviations and perturbed nonlinearities is studied. In this paper, an additive-type of parameter deviations are considered. The feature of the proposed method is that the tolerable range of individual parameter deviation and the conditions for the perturbed nonlinearities are simultaneously obtainable.

1.
Anderson
B. D. O.
,
1966
, “
Stability of Control Systems with Multiple Nonlinearities
,”
Journal of the Franklin Institute
, Vol.
282
, No.
3
, pp.
155
160
.
2.
Biernacki
R. M.
,
Hwang
H.
, and
Bhattacharyya
S. P.
,
1987
, “
Robust Stability with Structured Real Parameter Perturbations
,”
IEEE Transactions on Automatic Control
, Vol.
AC-32
, No.
6
, pp.
495
506
.
3.
Galimidi
A. R.
, and
Barmish
B. R.
,
1986
, “
The Constrained Lyapunov Problem and its Application to Robust Output Feedback Stabilization
,”
IEEE Transactions on Automatic Control
, Vol.
AC-31
, No.
5
, pp.
410
419
.
4.
Geromel
J. C.
, and
Santo
A. O.
,
1986
, “
On the Robustness of Linear Continuous-Time Dynamic Systems
,”
IEEE Transactions on Automatic Control
, Vol.
AC-31
, No.
12
, pp.
1136
1138
.
5.
Grujic´
Lj. T.
, and
Petkovski
Dj.
,
1986
, “
On Robustness of Lurie Systems with a Single Nonlinearity
,”
Control-Theory and Advanced Technology
, Vol.
2
, No.
4
, pp.
627
632
.
6.
Keel
L. H.
,
Bhattacharyya
S. P.
, and
Howza
J. W.
,
1988
, “
Robust Control with Structured Perturbations
,”
IEEE Transactions on Automatic Control
, Vol.
AC-33
, No.
1
, pp.
68
77
.
7.
Lehtomaki
N. A.
,
Sandell
N. R.
, and
Athans
M.
,
1981
, “
Robustness Results in Linear-Quadratic Gaussian Based Multivariable Control Design
,”
IEEE Transactions on Automatic Control
, Vol.
AC-26
, No.
2
, pp.
75
92
.
8.
Miyagi
H.
, and
Yamashita
K.
,
1986
, “
Stability Studies of Control Systems Using a Non-Lure´ Type Lyapunov Function
,”
IEEE Transactions on Automatic Control
, Vol.
AC-31
, No.
10
, pp.
970
972
.
9.
Miyagi
H.
, and
Yamashita
K.
,
1992
, “
Robust Stability of Lure´ Systems with Multiple Nonlinearities
,”
IEEE Transactions on Automatic Control
, Vol.
AC-37
, No.
6
, pp.
883
886
.
10.
Zhou
K.
, and
Khargonekar
P. P.
,
1987
, “
Stability Robustness Bounds for Linear State-Space Models with Structured Uncertainty
,”
IEEE Transactions on Automatic Control
, Vol.
AC-32
, No.
7
, pp.
621
623
.
This content is only available via PDF.
You do not currently have access to this content.