We derive a variety of succinct criteria of robust stability for discrete uncertain systems which contain multiple delays and a class of series nonlinearities. Each result is expressed by a brief inequality and corresponds to compromise between simplicity and sharpness. The properties of norm are employed to investigate robustness conditions that guarantee asymptotic stability rather than ultimate boundedness of trajectories. It is shown that the uncertainties, nonlinearities, and delays are the factors of instability of the overall system, between which some compromise is necessary.

1.
Alford
R. L.
, and
IEE
E. B.
, “
Sampled Data Hereditary Systems: Linear Quadratic Theory
,”
IEEE Trans. Automat Contr.
, Vol.
AC-31
, pp.
60
65
,
1986
.
2.
Feliachi
A.
, and
Thowsen
A.
, “
Memoryless Stabilization of Linear Delay-Differential Systems
,”
IEEE Trans. Automat. Contr.
, Vol.
AC-26
, pp.
586
587
,
1981
.
3.
Wang
S. S.
,
Chen
B. S.
, and
Lin
T. P.
, “
Robust Stability of Uncertain Time-Delay Systems
,”
Int. J. Contr.
, Vol.
46
, pp.
963
976
,
1987
.
4.
Ikeda
M.
, and
Ashida
T.
, “
Stabilization of Linear Systems With Time-Varying Delay
,”
IEEE Trans. Automat. Contr.
, Vol.
AC-24
, pp.
369
370
,
1979
.
5.
Chou
J. H.
,
Horng
I. R.
, and
Chen
B. S.
, “
Dynamical Feedback Compensator for Uncertain Time-Delay Systems Containing Saturating Actuator
,”
Int. J. Contr.
, Vol.
49
, pp.
961
968
,
1989
.
6.
Mori
T.
, “
Criteria for Asymptotic Stability of Linear Time Delay Systems
,”
IEEE Trans. Automat Contr.
, Vol.
AC-30
, pp.
158
161
,
1985
.
7.
Mori
T.
,
Fukuma
N.
, and
Kuwahara
M.
, “
Simple Stability Criteria for Signal and Composite Linear Systems With Time Delays
,”
Int. J. Contr.
, Vol.
34
, pp.
1175
1184
,
1981
.
8.
Patel
N. K.
,
Das
P. C.
, and
Prabhu
S. S.
, “
Optimal Control of Systems Described by Delay Differential Equations
,”
Int. J. Contr.
, Vol.
36
, pp.
303
311
,
1982
.
9.
Kantor
J. C.
, and
Andres
R. P.
, “
Characterization of Allowable Perturbations for Robust Stability
,”
IEEE Trans. Automat. Contr.
, Vol.
AC-28
, pp.
107
109
,
1983
.
10.
Kimura
H.
, “
Robust Stabilizability for a Class of Transfer Functions
,”
IEEE Trans. Automat. Contr.
, Vol.
AC-29
, pp.
788
793
,
1984
.
11.
Safonov
M. G.
,
Laub
A. J.
, and
Hartmann
G. L.
, “
Feedback Properties of Multivariable Systems: The Role and Use of the Return Difference Matrix
,”
IEEE Trans. Automat Contr
, Vol.
26
, pp.
47
65
,
1979
.
12.
Sandell
N. R.
, “
Robust Stability of Systems With Application to Singular Perturbations
,”
Automatica
, Vol.
15
, pp.
467
470
,
1979
.
13.
Yedavalli
R. K.
, “
Perturbation Bounds for Robust Stability in Linear State Space Models
,”
Int. J. Contr.
, Vol.
42
, pp.
1507
1517
,
1985
.
14.
R. P, Agarwal, Difference Equations and Inequalities Theory, Methods, and Applications, Dekker, New York, 1992.
This content is only available via PDF.
You do not currently have access to this content.