The problem of robust Kalman filter synthesis is considered in this present study for discrete multiple time-delay stochastic systems with parametric and noise uncertainties. A discrete multiple time-delay uncertain stochastic system can be transformed into another uncertain stochastic system with no delay by properly defining state variables. Minimax theory and Bellman-Gronwall lemma are employed on the basis of the upper norm-bounds of parametric uncertainties and noise uncertainties. A robust criterion can consequently be derived which guarantees the asymptotic stability of the uncertain stochastic system. Designed procedures are finally elaborated upon with an illustrative example.

1.
Alford
R. L.
, and
Lee
E. B.
,
1986
, “
Sampled Data Hereditary Systems: Linear Quadratic Theory
,”
IEEE Trans. Automat. Control
, Vol.
31
, pp.
60
65
.
2.
Feliachi
A.
, and
Thowsen
A.
,
1981
, “
Memoryless Stabilization of Linear Delay-Differential Systems
,”
IEEE Trans. Automat. Control
, Vol.
26
, pp.
586
587
.
3.
Wang
S. S.
,
Chen
B. S.
, and
Lin
T. P.
,
1987
, “
Robust Stability of Uncertain Time-Delay Systems
,”
Internat. J. Control
, Vol.
46
, pp.
963
976
.
4.
Ikeda
M.
, and
Ashida
T.
,
1979
, “
Stabilization of Linear Systems with Time-Varying Delay
,”
IEEE Trans. Automat. Control
, Vol.
24
, pp.
369
370
.
5.
Chou
J. H.
,
Horng
I. R.
, and
Chen
B. S.
,
1989
, “
Dynamical Feedback Compensator for Uncertain Time-Delay Systems Containing Saturating Actuator
,”
Internal. J. Control
, Vol.
49
, pp.
961
968
.
6.
Mori
T.
,
1985
, “
Criteria for Asymptotic Stability of Linear Time Delay Systems
,”
IEEE Trans. Automat. Control
, Vol.
30
, pp.
158
161
.
7.
Mori
T.
,
Fukuma
N.
, and
Kuwahara
M.
,
1981
, “
Simple Stability Criteria for Single and Composite Linear Systems with Time Delays
,”
Internal J. Control
, Vol.
34
, pp.
1175
1184
.
8.
Patel
N. K.
,
Das
P. C.
, and
Prabhu
S. S.
,
1982
, “
Optimal Control of Systems Described by Delay Differential Equations
,”
Internat. J. Control
, Vol.
36
, pp.
303
311
.
9.
Hsiao
F. H.
,
Hsieh
J. G.
, and
Wu
M. S.
,
1991
, “
Determination of the Tolerable Sector of Series Nonlinearities in Uncertain Time-Delay Systems Under Dynamical Output Feedback
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL.
, Vol.
113
, pp.
525
531
.
10.
Chen
B. S.
, and
Dong
T. Y.
,
1988
, “
Robust Stability Analysis of Kalman Filter Under Parametric and Noise Uncertainties
,”
Internat. J. Control
, Vol.
48
, pp.
2189
2199
.
11.
Nahi
N. E.
,
1978
, “
Bounding Filter; A Simple Solution to Lack of Exact A Priori Statistics
,”
IEEE Trans. Information and Control
, Vol.
39
, pp.
212
224
.
12.
Kassam, S. A., Lim, T. L., and Cimini, L. J., 1980, IEEE Trans. on Geoscience and Remote Sensing, Vol. 18, pp. 331–336.
13.
Poor
v.
, and
Looze
D. P.
,
1981
, “
Minimax State Estimation for Linear Stochastic Systems with Noise Uncertainty
,”
IEEE Trans. Automat. Control
, Vol.
26
, pp.
902
906
.
14.
Morris
J. M.
, “
The Kalman Filter: A Robust Estimator for Some Classes of Linear Quadratic Problems
,”
IEEE Trans. on Information Theory
, Vol.
22
, pp.
526
534
.
15.
Chen, C. T., 1984, Linear System Theory and Design, Saunders College Publishing, Orlando, FL.
16.
Desoer, C. A., and Vidyasagar, M., 1975, Feedback Systems: Input-Output Properties, Academic Press, New York.
This content is only available via PDF.
You do not currently have access to this content.