In this paper, we deal with the robust stabilizability of the class of uncertain linear time-delay systems with Markovian jumping parameters and unknown but bounded uncertainties. Under the assumption of the complete access to the continuous state, the stochastic controllability of the nominal system and the boundedness of the system’s uncertainties, sufficient conditions which guarantee the robustness of the stability of this class of systems are given. The control law which guarantees the robustness of the stabilizability is linear-type or saturation-type. An example is presented to illustrate the usefulness of the proposed theoretical results.

1.
Barmish, B. R., Corless, M., and Leitmann, G., 1983, “A New Class of Stabilizing Controllers for Uncertain Dynamical Systems,” SIAM Journal of Control and Optimization, Vol. 21, No. 2, Mar.
2.
Boukas
E. K.
,
1993
, “
Control of Systems with Controlled Jump Markov Disturbances
,”
Control Theory and Advanced Technology
, Vol.
9
, No.
2
, June, pp.
577
595
.
3.
Boukas, E. K., and Haurie, A., 1990, “Manufacturing Flow Control and Preventive Maintenance: A Stochastic Control Approach,” IEEE Transactions on Automatic Control, AC-35 (9).
4.
Boukas, E. K., 1996, Robust Linear Control: States Space Approach, forthcoming.
5.
Boukas, E. K., and Yang, H., “Robust Stability of Nonlinear Piecewise Deterministic Systems under Matching Conditions,” 13th World Congress International Federation of Automatic Control, July 1–5, 1996.
6.
Davis
M. H. A.
,
1984
, “
Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models
,”
Journal. Royal Statistical Society
,
B46
, pp.
353
353
.
7.
Cheres
E.
,
Gutman
S.
, and
Palmor
Z. J.
,
1989
, “
Stabilization of Uncertain Dynamic System Including State Delay
,”
IEEE Transactions on Automatic Control
, Vol.
34
, pp.
1199
1230
.
8.
Gregory J. Nazaroff., 1973, “Stability and Stabilization of Linear Differential Delay Systems,” IEEE Transactions on Automatic Control, pp. 317–318.
9.
Gutman
S.
,
1979
, “
Uncertain Dynamical Systems—A Lyapunov Min-Max Approach
,”
IEEE Transactions on Automatic Control
, Vol.
24
, No.
3
, pp.
437
443
.
10.
Ji, Y., and Chizek, H., 1990, “Controllability, Stabilizability, and Continuous-Time Markovian Jump Linear Quadratic Control,” IEEE Transactions on Automatic Control, Vol. 35, No. 7.
11.
Ji
Y.
,
Feng
X.
,
Loparo
K. A.
, and
Chizeck
H. J.
,
1992
, “
Stochastic Stability Properties of Jump Linear Systems
,”
IEEE Transactions on Automatic Control
, Vol.
37
, No.
1
, pp.
38
53
.
12.
Kats
I. I.
, and
Krasovskii
N. N.
,
1960
, “
On the Stability of Systems with Random Attributes
,”
Journal of Applied Mathematics and Mechanics
, Vol.
24
, pp.
1225
1246
.
13.
Khalil, H. K., 1992, Nonlinear Systems, Macmillan Publishing Company, New York.
14.
Krasovskii, N. N., and Lidskii, E. A., 1961, “Analytical Design of Controllers in Systems with Random Attributes,” Automation and Remote Control, Parts I–III, No. 22, pp. 1021–1025.
15.
Kreindler
E.
, and
Jameson
A.
,
1972
, “
Conditions for Nonnegativeness of Partitioned Matrices
,”
IEEE Transactions on Automatic Control
, Vol.
AC-17
, Feb., pp.
147
148
.
16.
Kushner, H. J., 1967, Stochastic Stability and Control, Academic, New York.
17.
Leitmann
G.
,
1981
, “
On the Efficacy of Nonlinear Control in Uncertain Linear Systems
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
102
, pp.
95
102
.
18.
Magdi
S. Mahmoud
, and
Naser
F. Al-Muthairi
,
1994
, “
Design of Robust Controllers for Time-Delay Systems
,”
IEEE Transactions on Automatic Control
, Vol.
AC-39
, No.
5
, pp.
995
999
.
19.
Mariton
M.
, and
Bertrand
P.
,
1985
, “
Output Feedback for a Class of Linear Systems with Stochastic Jump Parameters
,”
IEEE Transactions on Automatic Control
, Vol.
AC-30
, No.
9
, pp.
898
900
.
20.
Mariton, M., 1990, Jump Linear Systems in Automatic Control, New York and Basel.
21.
Mori
T.
,
Noldust
E.
, and
Kuwahara
M.
,
1983
, “
A Way to Stabilize Linear Systems with Delayed State
,”
International Journal of Control
, Vol.
19
, pp.
571
573
.
22.
Mori
T.
,
1985
, “
Criteria for Asymptotic Stability of linear Time-Delay Systems
,”
IEEE Transactions on Automatic Control
, Vol.
30
, 1985, pp.
158
161
.
23.
Rishel, R., 1975, “Control of System with Jump Markov Disturbances,” IEEE Transactions on Automatic Control, p. 241.
24.
Su
Te-Jen
,
Kou
Te-Son
, and
York-Yih
Sun
,
1988
, “
Robust Stability for Linear Time-Delay Systems with Linear Parameter Perturbation
,”
International Journal of Control
, Vol.
19
, No.
10
, pp.
2123
2129
.
25.
Su
J. H.
,
Fong
I-K.
, and
Tseng
C. L.
,
1994
, “
Stability Analysis of Linear Systems with Time-Delay
,”
IEEE Transactions on Automatic Control
, Vol.
39
, No.
6
, pp.
11341
1344
.
26.
Sworder
D.
,
1969
, “
Feedback Control of a Class of Linear Systems with Jump Parameters
,”
IEEE Transactions on Automatic Control
, Vol.
AC-14
, pp.
9
14
.
27.
Thorp
J. S.
, and
Barmish
B. R.
,
1981
, “
On Guaranteed Stability of Uncertain Linear Systems via Linear Control
,”
Journal of Optimization Theory and Application
, Vol.
35
, No.
4
, pp.
559
579
.
28.
Trinh
H.
, and
Aldeen
M.
,
1994
, “
Stabilization of Uncertain Dynamic Delay Systems by Memoryless Feedback Controllers
,”
International Journal of Control
, Vol.
59
, No.
6
, pp.
1525
1542
.
29.
Vermes
D.
,
1985
, “
Optimal Control of Piecewise Deterministic Markov Process
,”
Stochastics
, Vol.
14
, p.
165
165
.
30.
Wang
S. S.
,
Chen
B. S.
, and
Lin
T. P.
,
1987
, “
Robust Stability of Uncertain Time-Delay Systems
,”
International Journal of Control
, Vol.
46
, No.
3
, pp.
963
976
.
31.
Wonham, W. M., 1971, “Random Differential Equations in Control Theory,” Probabilistic Methods in Applied Mathematics, Vol. 2, A. T. Beruche-Reid, ed., N.Y.
This content is only available via PDF.
You do not currently have access to this content.