This paper addresses the servo design for a real-time, laser-tracking, three-dimensional (3-D), position measurement system. The 3-D measurement system uses two sets of tracking mirrors to shine laser beams toward the measurement point. By examining the angles of these mirrors, one can calculate the position of this point. The servo loop in the measurement system corrects the mirror orientations by continuously checking and compensating the offset between the out going laser beam and the beam reflected from a retro-reflector attached to the measurement point. To achieve high speed and high accuracy measurement, the tracking servo system has to compensate for the highly nonlinear nature of the system and maintain the laser beams close to the measurement point. This paper derives the relationship between the tracking angle rotations and the measured beam offsets. By including this relationship in the system model, the linear H optimization technique can be applied for controller synthesis. All the design specifications are then directly implemented.

1.
An, C. H., Atkeson, C. G., Griffiths, J. D., and Hollerbach, J. M., 1987, “Experimental Evaluation of Feedforward and Computer Torque Control,” Proc. IEEE Int. Conf. on Robotics and Automation, Raleigh, NC, Mar. 31–Apr. 3, pp. 165–168.
2.
Chen, M. Z., 1989, “Path Control of an Intelligent Robot Manipulator,” NSF report No. NSF 78-0422-E002-04, Taiwan, R.O.C.
3.
Craig
J. J.
,
Hsu
P.
, and
Sastry
S. S.
,
1987
, “
Adaptive Control of Mechanical Manipulatros
,”
Int. J. Robotics Res.
, Vol.
6
, Summer, pp.
16
28
.
4.
deSilva
C. W.
, and
Van Winssem
J.
,
1987
, “
Least Square Adaptive Control for Trajectory Following Robotics
,”
Trans. ASME
, Vol.
109
, June, pp.
104
110
.
5.
Dorf, R. C., 1983, Robotics and Automated Manufacturing, The Southeast Book Company, Reston Publishing, Reston, VA.
6.
Fan, K. C., and C. Y. Fang, 1988, “Development of Multi-Function Error Calibration Systems for NC Machine Tools,” Bulletin of the College of Engineering, National Taiwan University, No. 45, Feb., pp. 65–89.
7.
Franklin, G. F., Powell, J. D., and Workman, M. L., 1990, Digital Control of Dynamic Systems, 2nd ed, Addison-Wesley.
8.
Gilby, J., and Parker, G., 1982, “Laser Tracking System to Measure Robot Arm Performance,” Sensor Review, Oct.
9.
Han
J-Y
,
Hemani
H.
, and
Yurkovich
S.
,
1987
, “
Nonlinear Adaptive Control of an N-link Robot With Unknown Load
,”
Int. J. Robotics Res.
, Vol.
6
, Fall, pp.
71
86
.
10.
Kasahara
H.
, and
Narita
S.
,
1985
, “
Parallel Processing of Robot-Arm Control Computation on a Multimicroprocessor System
,”
IEEE J. Robotics, Automat.
, Vol.
RA-1
, June, pp.
104
113
.
11.
Koivo
A. J.
, and
Guo
T. H.
,
1983
, “
Adaptive Linear Controller for Robotic Manipulators
,”
IEEE Trans. Automat Contrl
, Vol.
AC-28
, pp.
162
171
.
12.
Lau, K. L., Hayness, L., and Hocken, R., 1985, “Robot Performance Measurements Using Automatic Laser Tracking Techniques,” Robotics & Computer-Integrated Manufacturing, pp. 227–236.
13.
Lau, K., Hocken, R. J., and Haight, W., 1985, “An Automatic Laser Tracking Interferometer System for Robot Metorlogy,” NBS Report.
14.
Lee
C. G. S.
, and
Chung
M. J.
,
1984
, “
An Adaptive Control Strategy for Mechanical Manupulators
,”
IEEE Trans. Automat. Contr.
, Vol.
AC-19
, pp.
837
840
.
15.
Lee, C. G. S., and Chang, P. L., 1987, “Efficient Parallel Algorithms for Robot Forward Dynamic Computation,” Proc. IEEE Int. Conf. on Robotics and Automation, Raleigh, NC, Mar. 31–Apr. 3, pp. 654–659.
16.
Lee, C. G. S., Chung, M. J., Mudge, T. N., and Turney, J. L., 1982, “On the Control of Mechanical Manipulators,” Proc. 6th IFAC Symp. on Identification and System Parameter Estimation, Washington, DC, June, pp. 1454–1459.
17.
LEICA Co., 1990, SMART 310 introduction menu.
18.
Leininger, G. G., 1984, “Adaptive Control of Manipulators Using Self-Tuning Methods,” First International Symposium on Bobotics Research, Brady, M. and Paul, R., eds., MIT Press, Cambridge, MA.
19.
Lim
K. Y.
, and
Eslam
M.
,
1987
, “
Robust Adaptive Controller Designs for Robot Manipulator Systems
,”
IEEE J. Robotics Automat.
, Vol.
RA-3
, Feb., pp.
54
66
.
20.
Ljung, L., and Soderstrom, T., 1987, Theory and Practice of Recursive Identification, The MIT Press.
21.
Lhote, F., Kauffmann, J., Andre, P., and Taillard, J., 1983, Robot Components and Systems, Anchor Brendon Ltd, Tiptree, Essex.
22.
Luh
J. Y. S.
,
Walker
W.
, and
Paul
R. P.
,
1980
, “
Resolved-Acceleration Control of Mechanical Manipulators
,”
IEEE Trans. Automat. Control
, Vol.
AC-25
, pp.
468
474
.
23.
Miller
W. T.
,
Hewes
R. P.
,
Glanz
F. H.
, and
Kraft
L. G.
,
1990
, “
Real-Time Dynamic Control of an Industrial Manipulator Using a Neural-Network-Based Learning Controller
,”
IEEE Trans. on Robotics and Automat.
, Vol.
6
, No.
1
, Feb., pp.
1
9
.
24.
Nigam
R.
, and
Lee
C. G. S.
,
1985
, “
A Multiprocessor Based Controller for the Control of Mechanical Manipulators
,”
IEEE J. Robotics Automat.
, Vol.
RA-3
. Dec. pp.
624
639
.
25.
Neuman
C. P.
, and
Tourassia
V. D.
,
1987
, “
Robust Discrete Nonlinear Feedback Control for Robotic Manipulators
,”
J. Robotic Syst.
, Vol.
4
, Feb., pp.
115
143
.
26.
Paul, R. P., 1981, Robot Manipulators: Mathematics, Programming, and Control, The MIT Press, Cambridge, MA, and London, England.
27.
Seraji
H.
,
1987
, “
Direct Adaptive Control of Manipulators in Cartesian Space
,”
J. Robotic Syst.
, Vol.
4
, Feb., pp.
157
178
.
28.
Slotine
J. E.
, and
Li
W.
,
1987
, “
On the Adaptive Control of Robot Manipulators
,”
Int. J. Robotics Res.
, Vol.
6
, Fall, pp.
45
59
.
29.
Wang, Y., and Butner, S. E., 1987, “A New Architucture for Robot Controls,” Proc. IEEE Int. Conf. on Robotics and Automat., Raleigh, NC, Mar. 31–Apr. 3, pp. 664–670.
This content is only available via PDF.
You do not currently have access to this content.