A numerical approach is proposed in this work for computing a linear quadratic optimal regulator from input-output data. The method is applicable whenever the plant is open-loop stable. The major advantages of the method are two-fold. First, it involves an output feedback control law; hence, no state estimation is required for implementation. Second, the computation of this optimal controller can be conducted without explicit identification of the plant model.

1.
Anderson
B. D. O.
, and
Johnson
C. R.
,
1982
, “
Exponential Convergence of Adaptive Identification and Control Problems
,”
Automatica
, Vol.
18
, pp.
1
13
.
2.
A˚stro¨m
K. J.
,
1980
, “
A Robust Sampled Regulator for Stable Systems with Monotone Step Responses
,”
Automatica
, Vol.
16
, pp.
313
313
.
3.
A˚stro¨m, K. J., and Wittenmark, B., 1989, Adaptive Control, Addison Wesley.
4.
Chen, C. T., 1984, Linear System Theory and Design, Holt, Rinehart, and Winston, New York.
5.
Doyle
J. C.
,
1978
, “
Guaranteed Margins for LQG Regulators
,”
IEEE Transaction on Automatic Control
, Vol.
AC-23
, pp.
756
7
.
6.
Doyle
J. C.
, and
Stein
G.
,
1979
, “
Robustness With Observers
,”
IEEE Transaction on Automatic Control
, Vol.
AC-24
, pp.
607
11
.
7.
Doyle
J. C.
, and
Stein
G.
,
1981
, “
Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis
,”
IEEE Transaction on Automatic Control
, Vol.
AC-26
, pp.
4
16
.
8.
Franklin, G. F., and Powell, J. D., 1980, Digital Control of Dynamic Systems, Addison-Wesley, New York.
9.
Kalman
R. E.
,
1960
, “
Contribution to the Theory of Optimal Control
,”
Bol. Soc. Mat. Mex.
, Vol.
5
, pp.
102
19
.
10.
Kalman, R. E., 1963, The Theory of Optimal Control and the Calculus of Variations, Mathematical Optimization Techniques, University of California Press, Berkeley.
11.
Kalman
R. E.
,
1963
, “
Mathematical Description of Linear Dynamic Systems
,”
SIAM J. Control
, Ser. A,
1
, pp.
152
92
.
12.
Landau, Y. D., 1979, Adaptive Control—The Model Reference Approach, Marcel Dekker, New York.
13.
Ljung, L., and So¨derstro¨m, T., 1983, Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA.
14.
Ljung, L., 1987, System Identification—Theory for the User, Englewood Cliffs, N.J.: Prentice Hall.
15.
Maciejowski, J. M., 1989, Multivariable Feedback Design, Addison-Wesley, New York.
16.
Owens
D. H.
, and
Chotai
A.
,
1984
, “
Robust Sampled Regulators for Stable Systems from Plant Step Data
,”
Automatica
, Vol.
20
, pp.
465
469
.
17.
Rogers
E.
, and
Owens
D. H.
,
1990
, “
Simulation-Based Stability Tests for Differential Unit Memory Linear Multipass Processes
,”
Int. J. Control
, Vol.
51
, No.
5
, pp.
1051
1065
.
18.
Roppenecker
G.
, and
O’Reilly
J.
,
1989
, “
Parametric Output Feedback Controller Design
,”
Automatica
, Vol.
25
, pp.
259
265
.
19.
Zames
G.
,
1966
, “
On the Input-Output Stability of Time-Varying Nonlinear Feedback Systems—Part I: Conditions Derived Using Concepts of Loop Gains, Conicity and Positivity
,”
IEEE Trans. Auto. Contr.
, Vol.
AC-11
, pp.
465
478
.
This content is only available via PDF.
You do not currently have access to this content.