This note addresses the problem of constrained variance design with minimizing LQG cost function via the method of covariance control incorporating the optimal estimation for nonlinear stochastic systems. The nonlinear stochastic systems are first linearized and then are examined by way of the technique of describing functions. Finally, an application of this approach to a position servomechanism is illustrated by a numerical example.

1.
Beaman
J. J.
, “
Non-linear Quadratic Gaussian Control
,”
Int. J. Control
, Vol.
39
, No.
2
,
1984
, pp.
343
361
.
2.
Beaman
J. J.
, and
Lin
C. H.
, “
Application of Nonlinear Quadratic Stochastic Control to a Position Servomechanism
,”
ASME Journal of Dynamic System Measurement and Control
, Vol.
112
,
1990
, pp.
675
679
.
3.
Leithead
W. E.
, “
Systematic Approach to Linear Approximation of Nonlinear Stochastic Systems, Part 1: Asymptotic Expansions
,”
Int. J. Control
, Vol.
51
, No.
1
,
1990
, pp.
71
91
.
4.
Hotz
A. F.
, and
Skelton
R. E.
, “
A Covariance Control Theory
,”
Int. J. Control
, Vol.
46
, No.
1
,
1987
, pp.
13
32
.
5.
Collins
E. G.
and
Skelton
R. E.
, “
A Theory of State Covariance Assignment for Discrete Systems
,”
IEEE Trans. Auto. Control
, Vol.
AC-32
, No.
1
,
1987
, pp.
35
41
.
6.
Chung
H. Y.
, and
Chang
W. J.
, “
Covariance Control with Variance Constraints for Continuous Perturbed Stochastic Systems
,”
Syst. & Control Letters
, Vol.
19
, No.
5
,
1992
, pp.
413
417
.
7.
Chang
W. J.
, and
Chung
H. Y.
, “
Upper Bound Covariance Control of Discrete Perturbed Systems
,”
Syst. & Control Letters
, Vol.
19
, No. 6,
1992
, pp.
493
498
.
8.
Chung
H. Y.
, and
Chang
W. J.
, “
Input and State Covariance Control for Bilinear Stochastic Discrete Systems
,”
C-TAT, Control-Theory and Advanced Technology
, Vol.
6
, No.
4
, Dec.
1990
, pp.
655
667
.
9.
Chung
H. Y.
,
Chang
W. J.
, and
Tsay
M. K.
, “
On the Controller Design for Perturbed Bilinear Stochastic Systems
,”
JSME Int. J., Series III
, Vol.
33
, No.
4
, Dec.
1990
, pp.
559
566
.
10.
Chung
H. Y.
, and
Chang
W. J.
, “
Constrained Variance Design for Bilinear Stochastic Continuous Systems
,”
IEE Proceedings, Part D, Control Theory and Applications
, Vol.
138
, No.
2
, Mar.
1991
, pp.
145
150
.
11.
Bryson, A. E., and Ho, Y. C. Applied Optimal Control, New York, Wiley, 1975.
12.
Mathews, J. H., Numerical Methods for Computer Science, Engineering, and Mathematics, Prentice-Hall, 1987.
13.
Anderson, B. D. O., and Moore, J. B., Optimal Control (Linear Quadratic Methods), Prentice-Hall, 1989.
This content is only available via PDF.
You do not currently have access to this content.