Parametric excitation is used to control the vibration of a conservative mechanical system. The excitation is varied according to a quadratic, state feedback, control law. If the system has distinct eigenvalues and a full rank, diagonalizable, parametric control matrix, then the control law is asymptotically stabilizing. To eliminate the required full state sensing, an observer is designed to estimate the states from the minimum number of linear measurements. There always exists an observer if the system is linearly observable and the control is bounded. An example demonstrates the method.

1.
Balas
M. J.
,
1981
, “
Nonlinear State Estimation and Feedback Control of Nonlinear and Bilinear Distributed Parameter Systems
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
102
, June, pp.
78
83
.
2.
Benallou
A.
,
Mellichamp
D. A.
, and
Seborg
D. E.
,
1988
, “
Optimal stabilizing controllers for bilinear systems
,”
Int. J. Control
, Vol.
48
, No.
4
, pp.
1487
1501
.
3.
Byrnes, C. I., and A. Isidori, 1989, “Steady State Response, Separation Principle, and the Output Regulation of Nonlinear Systems,” Proc. 28th Conf. on Decision and Control, Tampa, FL, Dec., pp. 2247–2251.
4.
Caughey
T. K.
,
1960
, “
Classical Normal Modes in Damped Linear Dynamic Systems
,”
ASME Journal of Applied Mechanics
, Vol.
27
, No.
2
, June, pp.
269
271
.
5.
Chen, C.-T., 1984, Linear System Theory and Design, Holt, Rinehart, and Winston, New York.
6.
Derese
I.
, and
Noldus
E. J.
,
1980
, “
Nonlinear Control of Bilinear Systems
,”
IEE Proc.
, Vol.
127
, Part D, No.
4
, July, pp.
169
175
.
7.
Derese
I. A.
and
Noldus
E. J.
,
1981
, “
Existence of Bilinear State Observers for Bilinear Systems
,”
IEEE Trans. Auto. Control
, Vol.
AC-26
, No.
2
, April, pp.
590
592
.
8.
Derese
I.
,
Stevens
P.
, and
Noldus
E.
,
1979
, “
Observers for Bilinear Systems with Bounded Input
,”
Int. J. Systems Sci.
, Vol.
10
, No.
6
, pp.
649
668
.
9.
Funahashi
Y.
,
1979
, “
Stable State Estimator for Bilinear Systems
,”
Int. J. Control
, Vol.
29
, No.
2
, pp.
181
188
.
10.
Hahn, W., 1967, Stability of Motion, Springer-Verlag, New York, pg. 102.
11.
Hara
S.
, and
Furuta
K.
,
1976
, “
Minimal Order State Observers for Bilinear Systems
,”
Int. J. Control
, Vol.
24
, No.
5
, pp.
705
718
.
12.
Kou
S. R.
,
Elliott
D. L.
, and
Tarn
T. J.
,
1975
, “
Exponential Observers for Nonlinear Dynamic Systems
,”
Inf. and Control
, Vol.
29
, pp.
204
216
.
13.
LaSalle
J. P.
,
1968
, “
Stability Theory for Ordinary Differential Equations
,”
J. Differential Equations
, Vol.
4
, pp.
57
65
.
14.
Longchamp
R.
,
1980
, “
Controller Design for Bilinear Systems
,”
IEEE Trans. Auto. Control
, Vol.
AC-25
, No.
3
, June, pp.
547
548
.
15.
Maghsoodi
Y.
,
1989
, “
Design and Computation of Near-Optimal Stable Observers for Bilinear Systems
,”
IEE Proceedings
, Vol.
136
, Pt. D, No.
3
, May, pp.
127
132
.
16.
Mohler, R. R., 1973, Bilinear Control Processes With Applications to Engineering, Ecology, and Medicine, Academic Press, New York.
17.
Mohler
R. R.
, and
Kolodziej
W. J.
,
1980
, “
An Overview of Bilinear System Theory and Applications
,”
IEEE Trans. on Sys., Man, and Cyber.
, Vol.
SMC-10
, No.
10
, Oct., pp.
683
688
.
18.
Slemrod
M.
,
1978
, “
Stabilization of Bilinear Control Systems With Applications to Nonconservative Problems in Elasticity
,”
SIAM J. Control and Optim.
, Vol.
16
, No.
1
, January, pp.
131
141
.
19.
Strang, G., 1980, Linear Algebra and Its Applications, Harcourt Brace Jovanovich, New York.
20.
Vidyasagar
M.
,
1980
, “
On the Stabilization of Nonlinear Systems Using State Detection
,”
IEEE Trans. Auto. Control
, Vol.
AC-25
, No.
3
, June, pp.
504
509
.
21.
Wang
W.-J.
, and
Chiou
J.-S.
,
1991
, “
A Non-Linear Control Design for the Discrete-Time Multi-Input Bilinear Systems
,”
Mechatronics
, Vol.
1
, No.
1
, pp.
87
94
.
This content is only available via PDF.
You do not currently have access to this content.