In the robotics field control laws taking into account the nonlinearities caused by the mechanical structure have been proposed, assuming that the drive system is linear. These control laws are well-adapted to the case of electric actuators. Electrohydraulics or electropneumatics drive systems introduce other nonlinearities coming both from the servo-valve and the actuator. In most cases these nonlinearities are neglected and the control laws usually used for these drive systems are based on a reduced third-order model obtained by a tangent linearization. A more satisfying solution is to introduce the nonlinearities of the drive system in the control law. This paper deals with the nonlinear control of an electropneumatic servodrive and is based on the nonlinear control theory in continuous time. It takes into account the main specific nonlinearities. The proposed control law consists of an exact input-output linearization via a static nonlinear state feedback. In our case, this control law leads to a one-dimensional unobservable subspace in closed-loop. A physical interpretation of this nonlinear control is given. This interpretation enables us to improve the understanding of the behavior of an electropneumatic servodrive. In order to compare the results obtained from an experimental device, the synthesis of a linear control law in discrete and continuous time is presented. A study in discrete time of the root locus versus position of the closed loop system with the linear control law, shows oscillations in the neighbourhood of the end of the actuator stroke. The experimental results confirm this fact. With nonlinear control these oscillations are suppressed.

1.
Andersen, B. W., 1976, The Analysis and Design of Pneumatic Systems, John Willey and Sons, New-York.
2.
d’Andre´a-Novel, B., 1988, “Commande Non Line´aire des Robots,” Herme`s, traite´ des nouvelles technologies, Paris.
3.
Astrom, K. J., Wittenmark, B., 1984, Computer Controlled Systems, Theory and Design, Prentice-Hall, Englewood Cliffs.
4.
Barbot, J. P., 1989, “Methode de calcul applique´es aux syste`mes nonline´aires sous-e´chantillonnage,” The`se Sci, Paris Sud ORSAY.
5.
Buhler, H., 1982, “Re`glages e´chantillonne´s,” Presses polytechniques romandes, Lausanne.
6.
Burrows, C. R., 1972, Fluid Power Servo Mechanisms, Van Nostrand Company, Londres.
7.
Chitty
A.
, and
Lanbert
T. H.
,
1976
, “
Modelling a Loaded Two-Way Pneumatic Actuator
,”
J. Meas. and Control
, Vol.
9
, No.
1
, pp.
19
25
.
8.
Claude, D., 1984, “Line´arisation par diffe´omorphisme et immersion des syste`mes,” 6th Conf. Analysis and Opt. Sys., Nice, June 19–22, pp. 339–351.
9.
Claude, D., Fliess, M., Isidori, A., 1983, “Immersion directe et par bouclage d’un syste`me non line´aire dans un line´aire,” C. R. Acad. Sci., Paris, 296, pp. 237–240.
10.
Comolet, R., 1979, “Me´canique experimentale des fluides, Tl statique et dynamique des fluides non visqueux,” Paris, Masson.
11.
Freund
E.
,
1975
, “
The Structure of Decoupled Non Linear Systems
,”
Int. J. Control
,
21
,
3
, pp.
443
450
.
12.
Isidori, A., 1989, Non Linear Control Systems, Second Edition, Berlin, Springer-Verlag.
13.
Jakubczyk
B.
,
Respondek
W.
,
1980
, “
On Linearization of Control Systems
,”
Bull. Acad, Polon. Sci. Ser. Sci. Math.
,
28
, pp.
517
522
.
14.
Jaocha, H., Papadimitriou I., 1990, “Regelungskonzepte fu¨r hydraulische UnterWasser-Roboter,” 9 Aachener Fluid Technisches Kolloquium, Fachgebiet Hydraulik band 2 Aachen, 20-22 mars, pp. 433–455.
15.
Jebar, H. S., 1977, “Design of Pneumatic Actuator Systems,” Ph.D. thesis, Nottingham.
16.
Kotta, U., 1985, “Decoupling of Discrete Time Non-Linear Systems by State Feedback,” Proc. Automatique, Tools for Tomorrow, Toulouse, Fr., pp. 171–181.
17.
McCloy, D., Martin, H. R., 1980, Control of Fluid Power: Analysis and Design, Ellis Harwood, Chichester.
18.
Monaco, S., Normand-Cyrot, D., 1985, “On the Sampling of a Linear Analytic Control System,” Proc. of IEEE 24th Conf. on Decision and Control, Fort Lauderdale, Fl, pp. 1457–1462.
19.
Richard, E., 1990, “De la commande lineaire et non lineaire en position des syste`mes e´lectropneumatiques,” The`se, Institut National des Sciences Applique´es de Lyon.
20.
Richard, E., Scavarda, S., 1989, “Non Linear Control of a Pneumatic Servodrive,” Second Bath International Fluid Power Workshop on Components and Systems, Bath (U.K.).
21.
Richard
E.
,
Scavarda
S.
,
1991
, “
Commande non-line´aire des syste`mes a` fluide sous pression
,”
Eurofluid, Power Transmlision
, Vol. No.
3
, pp.
15
21
.
22.
Richard, E., Scavarda, S., Det, F., 1990, “Control of an Electropneumatic Servodrive by Using a Modified Bang-Bang Method,” 9th Aachener Fluidtechnisches Kolloquuuium, Fachgebiet Pneumatik, Ger., pp. 105–121.
23.
Scavarda, S., Kellal, A., Richard, E., 1987, “Linearized models for an electropneumatic cylinder servovalve system,” Proc. of 3rd Int. Conf. on Advanced Robotics, Versailles, Fr., pp. 149–156.
24.
Shearer
J. L.
,
1956
, “
Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air, Part I and II
,”
Trans. ASME
, Vol.
78
, pp.
233
249
.
25.
Vukobratovic, M., Stokic, D., Kircanski, N., 1985, Non-Adaptive and Adaptive Control of Manipulation Robots, Springer-Verlag, Berlin.
This content is only available via PDF.
You do not currently have access to this content.