The development of high resolution, general purpose models of viscous, compressible flows is extremely difficult with existing system dynamics modeling tools. Published work admits to significant limitations, with regards to the treatment of flow geometry, inertia effects, or mass and energy convection. Combining a finite element discretization scheme with a bond graph based model formulation procedure provides a very general purpose tool for continuum fluid system modeling.

1.
Bathe, K.-J., 1982, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
2.
Bird, R. B., Armstrong, R. C., and Hassager, O., 1977, Dynamics of Polymeric Liquids, Volume 1, Wiley, New York.
3.
Bos
A. M.
, and
Breedveld
P. C.
,
1985
, “
1985 Update of the Bond Graph Bibliography
,”
Journal of the Franklin Institute
, Vol.
319
, No.
1/2
, pp.
269
286
.
4.
Bowen, R. M., and Wang, C.-C., 1976, Introduction to Vectors and Tensors, Plenum Press, New York.
5.
Breedveld
P. C.
,
1982
, “
Proposition for an Unambiguous Vector Bond Graph Notation
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
104
, pp.
267
270
.
6.
Breedveld, P. C., 1984, “Physical Systems Theory in Terms of Bond Graphs,” PhD dissertation, University of Twente, Enschede, the Netherlands.
7.
Broenink, J. F., 1990, Computer-Aided Physical-Systems Modeling and Simulation: A Bond-Graph Approach, University of Twente, Enschede, the Netherlands.
8.
Brown
F. T.
,
1991
a, “
Convection Bonds and Bond Graphs
,”
Journal of the Franklin Institute
, Vol.
328
, No.
5/6
, pp.
871
886
.
9.
Brown
F. T.
,
1991
b, “
Hamiltonian and Lagrangian Bond Graphs
,”
Journal of the Franklin Institute
, Vol.
328
, No.
5/6
, pp.
809
831
.
10.
Carey, G. F., and Oden, J. T., 1984, Finite Elements: Computational Aspects, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
11.
Dorney, C. N., 1993, Understanding Dynamic Systems, Prentice-Hall, Englewood Cliffs, New Jersey.
12.
Emanuel, G., 1986, Gasdynamics: Theory and Applications, AIAA Education Series, New York.
13.
Fahrenthold
E. P.
, and
Wargo
J. D.
,
1991
, “
Vector and Tensor Based Bond Graphs for Physical Systems Modeling
,”
Journal of the Franklin Institute
, Vol.
328
, No.
5/6
, pp.
833
853
.
14.
Fahrenthold
E. P.
, and
Wargo
J. D.
,
1994
, “
Lagrangian Bond Graphs for Solid Continuum Dynamics Modeling
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
116
, No.
2
, pp.
178
192
.
15.
Goodbody, A. M., 1982, Cartesian Tensors, Wiley, New York.
16.
Hairer, E., Lubich, C., and Roche, M., 1989, The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods, Springer-Verlag, New York.
17.
IMSL Math/Library, 1989, User’s Manual, FORTRAN Subroutines for Mathematical Applications, Houston.
18.
Karnopp
D. C.
,
1979
, “
State Variables and Pseudo Bond Graphs for Compressible Thermofluid Systems
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
101
, No.
3
, pp.
201
204
.
19.
Karnopp, D. C., Margolis, D. L., and Rosenberg, R. C., 1990, System Dynamics: A Unified Approach, Wiley, New York.
20.
Malvern, L. E., 1969, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Englewood Cliffs, New Jersey.
21.
McGlaun
J. M.
,
Thompson
S. L.
, and
Elrick
M. G.
,
1990
, “
CTH: A Three Dimensional Shock Wave Physics Code
,”
International Journal of Impact Engineering
, Vol.
10
, pp.
351
360
.
22.
Moskwa
J. J.
, and
Hedrick
J. K.
,
1992
, “
Modeling and Validation of Automotive Engines for Control Algorithm Development
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
114
, pp.
278
285
.
23.
Monaghan
J. J.
, and
Gingold
R. A.
,
1983
, “
Shock Simulation by the Particle Method SPH
,”
Journal of Computational Physics
, Vol.
52
, pp.
374
389
.
24.
Montbrud-Di Filippo
J. M.
,
Delgado
M.
,
Brie
C.
, and
Paynter
H. M.
,
1991
, “
A Survey of Bond Graphs: Theory, Applications, and Programs
,”
Journal of the Franklin Institute
, Vol.
328
, No.
5/6
, pp.
565
606
.
25.
Ogata, K., 1992, System Dynamics, Prentice-Hall, Englewood Cliffs, New Jersey.
26.
Peyret, R., and Taylor, T. D., 1983, Computational Methods for Fluid Flow, Springer-Verlag, New York.
27.
Sod
G. A.
,
1978
, “
A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws
,”
Journal of Computational Physics
, Vol.
27
, pp.
1
31
.
28.
Strand
K.
, and
Engja
H.
,
1991
, “
Bond Graph Interpretation of One-Dimensional Fluid Flow
,”
Journal of the Franklin Institute
, Vol.
328
, No.
5/6
, pp.
781
793
.
29.
Welty, J. R., Wilson, R. E., and Wicks, C. E., 1969, Fundamentals of Momentum, Heat, and Mass Transfer, John Wiley, New York.
30.
Wendt, J. F., editor, 1992, Computational Fluid Dynamics, Springer-Verlag, New York.
31.
Yen
C.
, and
Masada
G. Y.
,
1991
, “
Model of a Hyperelastic Thin Plate Using the Extended Bond Graph Method
,”
Journal of the Franklin Institute
, Vol.
328
, No.
5/6
, pp.
765
780
.
32.
Zienkiewicz, O. C., 1997, The Finite Element Method, McGraw-Hill, New York.
This content is only available via PDF.
You do not currently have access to this content.