Dither is a high frequency signal injected into nonlinear systems for the purpose of improving their performance. Stability of the dithered nonlinear singularly perturbed multiple time-delay system is investigated by deriving its corresponding dithered reduced-order model and by using the relaxed method to analyze stability of the dithered reduced-order model when the frequency of dither is sufficiently high. Moreover, if the singular perturbation parameter is sufficiently small, then stability of the relaxed model would imply stability in finite time of the dithered nonlinear singularly perturbed multiple time-delay system.
Issue Section:
Technical Briefs
1.
Chou
J. H.
Horng
I. R.
Chen
B. S.
1989
, “Dynamical Feedback Compensator for Uncertain Time-Delay Systems Containing Saturating Actuator
,” Int. J. Contr.
, Vol. 49
, pp. 961
–968
.2.
Coppel, W. A., 1965, Stability and Asymptotic Behavior of Differential Equations, D.C. Heath, Boston.
3.
Corless, M., and Glielmo, L., 1991, “Robustness of Output Feedback for a Class of Singularly Perturbed Nonlinear Systems,” Proc. 30th IEEE Conf. on Decision and Control, pp. 1066–1071.
4.
Feliachi
A.
Thowsen
A.
1981
, “Memoryless Stabilization of Linear Delay-Differential Systems
,” IEEE Trans. Autom. Contr.
, Vol. 26
, pp. 586
–587
.5.
Khalil
H. K.
1989
, “Feedback Control of Nonstandard Singularly Perturbed Systems
,” IEEE Trans. Autom. Control
, Vol. 34
, pp. 1052
–1060
.6.
Kokotovic, P. V., Khalil, H. K., and O’Reilly, J., 1986, Singular Perturbation Methods in Control: Analysis and Design, Academic Press, New York.
7.
Kokotovic
P. V.
O’malley
R. E.
Sannuti
P.
1976
, “Singular Perturbations and Order Reduction in Control Theory-An Overview
,” Automatica
, Vol. 12
, pp. 123
–132
.8.
Lakshmikantham, V., and Leela, S., 1969, Differential and Integral Inequalities, Academic Press, New York.
9.
Mori
T.
1985
, “Criteria for Asymptotic Stability of Linear Time Delay Systems
,” IEEE Trans. Autom. Control
, Vol. 30
, pp. 158
–161
.10.
Mori
T.
Fukuma
N.
Kuwahara
M.
1981
, “Simple Stability Criteria for Single and Composite Linear Systems with Time Delays
,” Int. J. Contr.
, Vol. 34
, pp. 1175
–1184
.11.
O’Reilly
J.
1980
, “Dynamical Feedback Control for a Class of Singularly Perturbed Linear Systems Using a Full-Order Observer
,” Int. J. Contr.
, Vol. 31
, pp. 1
–10
.12.
Saksena
V. R.
O’Reilly
J.
Kokotovic
P. V.
1984
, “Singular Perturbations and Time-Scale Methods in Control Theory: Survey 1976-1983
,” Automatica
, Vol. 20
, pp. 273
–293
.13.
Sharkey
P. M.
O’Reilly
J.
1988
, “Composite Control of Nonlinear Singularly Perturbed Systems: A Geometric Approach
,” Int. J. Contr.
, Vol. 48
, pp. 2491
–2506
.14.
Steinberg
A. M.
Kadushin
I.
1973
, “Stabilization of Nonlinear Systems With a Dither Control
,” J. Math. Anal. Appl.
, Vol. 43
, pp. 273
–284
.15.
Steinberg
A. M.
1986
, “Stabilization of Nonlinear Singularly Perturbed Systems With a Periodic Input
,” Int. J. Contr.
, Vol. 43
, pp. 657
–661
.16.
Wang
S. S.
Chen
B. S.
Lin
T. P.
1987
, “Robust Stability of Uncertain Time-Delay Systems
,” Int. J. Contr.
, Vol. 46
, pp. 963
–976
.17.
Weiss, L., and Infante, E. F., 1967, “Finite Time Stability Under Perturbing Forces and on Product Spaces,” IEEE Trans. Autom. Control, AC-12, pp. 54–59.
18.
Zames, G., and Shneydor, N. A., 1976, “Dither in Nonlinear Systems,” IEEE Trans. Autom. Control, AC-21, pp. 660–667.
This content is only available via PDF.
Copyright © 1996
by The American Society of Mechanical Engineers
You do not currently have access to this content.