Dither is a high frequency signal injected into nonlinear systems for the purpose of improving their performance. Stability of the dithered nonlinear singularly perturbed multiple time-delay system is investigated by deriving its corresponding dithered reduced-order model and by using the relaxed method to analyze stability of the dithered reduced-order model when the frequency of dither is sufficiently high. Moreover, if the singular perturbation parameter is sufficiently small, then stability of the relaxed model would imply stability in finite time of the dithered nonlinear singularly perturbed multiple time-delay system.

1.
Chou
J. H.
,
Horng
I. R.
, and
Chen
B. S.
,
1989
, “
Dynamical Feedback Compensator for Uncertain Time-Delay Systems Containing Saturating Actuator
,”
Int. J. Contr.
, Vol.
49
, pp.
961
968
.
2.
Coppel, W. A., 1965, Stability and Asymptotic Behavior of Differential Equations, D.C. Heath, Boston.
3.
Corless, M., and Glielmo, L., 1991, “Robustness of Output Feedback for a Class of Singularly Perturbed Nonlinear Systems,” Proc. 30th IEEE Conf. on Decision and Control, pp. 1066–1071.
4.
Feliachi
A.
, and
Thowsen
A.
,
1981
, “
Memoryless Stabilization of Linear Delay-Differential Systems
,”
IEEE Trans. Autom. Contr.
, Vol.
26
, pp.
586
587
.
5.
Khalil
H. K.
,
1989
, “
Feedback Control of Nonstandard Singularly Perturbed Systems
,”
IEEE Trans. Autom. Control
, Vol.
34
, pp.
1052
1060
.
6.
Kokotovic, P. V., Khalil, H. K., and O’Reilly, J., 1986, Singular Perturbation Methods in Control: Analysis and Design, Academic Press, New York.
7.
Kokotovic
P. V.
,
O’malley
R. E.
, and
Sannuti
P.
,
1976
, “
Singular Perturbations and Order Reduction in Control Theory-An Overview
,”
Automatica
, Vol.
12
, pp.
123
132
.
8.
Lakshmikantham, V., and Leela, S., 1969, Differential and Integral Inequalities, Academic Press, New York.
9.
Mori
T.
,
1985
, “
Criteria for Asymptotic Stability of Linear Time Delay Systems
,”
IEEE Trans. Autom. Control
, Vol.
30
, pp.
158
161
.
10.
Mori
T.
,
Fukuma
N.
, and
Kuwahara
M.
,
1981
, “
Simple Stability Criteria for Single and Composite Linear Systems with Time Delays
,”
Int. J. Contr.
, Vol.
34
, pp.
1175
1184
.
11.
O’Reilly
J.
,
1980
, “
Dynamical Feedback Control for a Class of Singularly Perturbed Linear Systems Using a Full-Order Observer
,”
Int. J. Contr.
, Vol.
31
, pp.
1
10
.
12.
Saksena
V. R.
,
O’Reilly
J.
, and
Kokotovic
P. V.
,
1984
, “
Singular Perturbations and Time-Scale Methods in Control Theory: Survey 1976-1983
,”
Automatica
, Vol.
20
, pp.
273
293
.
13.
Sharkey
P. M.
, and
O’Reilly
J.
,
1988
, “
Composite Control of Nonlinear Singularly Perturbed Systems: A Geometric Approach
,”
Int. J. Contr.
, Vol.
48
, pp.
2491
2506
.
14.
Steinberg
A. M.
, and
Kadushin
I.
,
1973
, “
Stabilization of Nonlinear Systems With a Dither Control
,”
J. Math. Anal. Appl.
, Vol.
43
, pp.
273
284
.
15.
Steinberg
A. M.
,
1986
, “
Stabilization of Nonlinear Singularly Perturbed Systems With a Periodic Input
,”
Int. J. Contr.
, Vol.
43
, pp.
657
661
.
16.
Wang
S. S.
,
Chen
B. S.
, and
Lin
T. P.
,
1987
, “
Robust Stability of Uncertain Time-Delay Systems
,”
Int. J. Contr.
, Vol.
46
, pp.
963
976
.
17.
Weiss, L., and Infante, E. F., 1967, “Finite Time Stability Under Perturbing Forces and on Product Spaces,” IEEE Trans. Autom. Control, AC-12, pp. 54–59.
18.
Zames, G., and Shneydor, N. A., 1976, “Dither in Nonlinear Systems,” IEEE Trans. Autom. Control, AC-21, pp. 660–667.
This content is only available via PDF.
You do not currently have access to this content.