In this paper, a new method for analyzing rigid body motion from measured data is presented. The approach is numerically stable, explicitly accounts for the errors inherent in measured data and those introduced by floating point arithmetic, automatically accommodates any number of rigid body particles, and is computationally efficient. The sole restriction on the data is that it represent 3 noncollinear particles of a rigid body.

1.
Angeles, J., 1982, Spatial Kinematic Chains, Chapter 2, Springer-Verlag, Berlin.
2.
Angeles
J.
,
1986
a, “
Automatic Computation of the Screw Parameters of Rigid-Body Motions. Part I: Finitely Separated Positions
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
108
, pp.
32
38
.
3.
Angeles
J.
,
1986
b, “
Automatic Computation of the Screw Parameters of Rigid-Body Motions. Part II: Infinitesimally Separated Positions
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
108
, pp.
39
43
.
4.
Angeles
J.
,
1987
, “
Computation of Rigid-Body Angular Acceleration from Point-Acceleration Measurements
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
109
, pp.
124
127
.
5.
Angeles, J., 1990, “Rigid-Body Pose and Twist Estimation in the Presence of Noisy Redundant Measurements,” in Proc. Eighth CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators, Cracow, pp. 74–81.
6.
Ball, R., 1900, A Treatise on the Theory of Screws, Cambridge University Press, Cambridge.
7.
Beatty
M.
,
1966
, “
Kinematics of Finite Rigid Body Rotations
,”
Amer. J. of Phys.
, Vol.
34
, pp.
949
954
.
8.
Beatty
M.
,
1977
b, “
Vector Analysis of Finite Rigid Rotations
,”
ASME Journal of Applied Mechanics
, Vol.
44
, pp.
501
502
.
9.
Beatty
M.
,
1977
a, “
Kinematics of Finite Rigid Body Rotations—Revisited
,”
Amer. J. of Phys.
, Vol.
45
, p.
1006
1006
.
10.
Beggs, J., 1966, Advanced Mechanism, Chapter 2, Macmillan, New York.
11.
Beggs, J., 1983, Kinematics, Chapter 3, Hemisphere, Washington, D.C.
12.
Bottema, O., and Roth, B., 1979, Theoretical Kinematics, Chapter 3, North Holland, Amsterdam.
13.
Chasles
M.
,
1830
, “
Note sur les proprie´te´s ge´ne´rales du syste`me de deux corps semblables entre eux et place´s d’une manie`re quelconque dans l’espace; et sur le de´placement fini, ou infiniment petit d’un corps solide libre
,”
Bulletin des Sciences Mathematiques de Ferussac
, Vol.
XIV
, pp.
321
336
.
14.
Dongarra, J. J., 1994, “Performance of Various Computers Using Standard Linear Equations Software,” Technical Report CS-89-85, University of Tennessee and Oak Ridge National Laboratory, Computer Science Department, University of Tennessee, Knoxville, TN 37996-1301.
15.
Fan
K.
, and
Hoffman
A.
,
1955
, “
Some Metric Inequalities in the Space of Matrices
,”
Proc. Amer. Math. Soc.
, Vol.
6
, pp.
111
116
.
16.
Goldstein, H., 1981, Classical Dynamics, Chapter 4, Addison-Wesley, Reading, MA.
17.
Graham, A., 1981, Kronecker Products and Matrix Calculus with Applications. Ellis Horwood Limited, Chichester, England.
18.
Hamidi, M., 1981, “On the Rigid Body Motion and Shape Distortion Evaluation for Large Flexible Spacecraft,” Proc. Conf. Large Space Struc., VA.
19.
Laub
A.
, and
Shiflett
G.
,
1982
, “
A Linear Algebra Approach to the Analysis of Rigid Body Displacement From Initial and Final Position Data
,”
ASME Journal of Applied Mechanics
, Vol.
49
, pp.
213
216
.
20.
Laub
A.
, and
Shiflett
G.
,
1983
, “
A Linear Algebra Approach to the Analysis of Rigid Body Velocity from Position and Velocity Data
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
105
, pp.
92
95
.
21.
Milne, E., 1948, Vectorial Mechanics, Chapter 8, Interscience, New York.
22.
Mirsky
L.
,
1960
, “
Symmetric Gauge Functions and Unitarily Invariant Norms
,”
Quart. J. Math.
Oxford, Vol.
11
, pp.
50
59
.
23.
Moler, C., Herskovitz, S., Little, J., and Bangert, S., 1987, MATLAB User’s Guide, The Math Works, Inc., Sherborn, MA.
24.
Paul
B.
,
1963
, “
On the Composition of Finite Rotations
,”
Amer. Math. Monthly
, Vol.
70
, pp.
859
862
.
25.
Potthoff, R., 1968, “An Analysis of the Biomechanics of the Human Knee,” Engineer’s thesis. Stanford University.
26.
Ravani
B.
, and
Ge
Q.
,
1993
, “
Computation of Spatial Displacements From Geometric Features
,”
ASME Journal of Mechanical Design
, Vol.
115
, pp.
95
102
.
27.
Rodrigues, O., 1840, “Des lois ge´ome´triques qui re´gissent les de´placements d’un syste`me solide dans l’espace et de la variation des coordonne´es provenant de ces de´placements conside´re´s inde´pendamment des causes qui peuvent les produire,” Journal des Mathematiques Pures et Appliques, V, 1st series, pp. 380–440.
28.
Roth, B., 1969, Discussion of a paper by K. E. Bisshopp, ASME Journal of Engineering for Industry, pp. 184–185.
29.
Routh, E., 1960, Dynamics of a System of Rigid Bodies, Chapter 5, Dover, New York.
30.
Schwartz
H.
,
1963
, “
Derivation of the Matrix of Rotation About a Given Axis as a Simple Exercise in Matrix Algebra
,”
Amer. J. of Phys.
, Vol.
31
, pp.
730
731
.
31.
Spoor
C.
, and
Veldpals
F.
,
1980
, “
Rigid Body Motion Calculated from Spatial Coordinates of Markers
,”
J. Biomechanics
, Vol.
13
, pp.
391
393
.
32.
Strom
T.
, and
Svensson
P.
,
1976
, “
On the Determination of an Orthogonal Transformation
,”
J. Comp. Appl. Math.
, Vol.
2
, pp.
7
11
.
33.
Suh, C., and Radcliffe, C., 1978, Kinematics and Mechanism Design, Chapter 3, Wiley, New York.
34.
Thurnauer
P.
,
1967
, “
Kinematics of Finite Rigid Body Displacements
,”
Amer. J. of Phys.
, Vol.
35
, pp.
1145
1154
.
35.
Whittaker, E., 1937, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Chapter 1, Cambridge University Press, Cambridge.
36.
Wittenburg, J., 1977, Dynamics of Systems of Rigid Bodies, Chapter 2, B. G. Teubner, Stuttgart.
This content is only available via PDF.
You do not currently have access to this content.