In this paper we present a method which produces complete decomposition of the optimal global Kalman filter for linear stochastic systems with small measurement noise into exact pure-slow and pure-fast reduced-order optimal filters both driven by the system measurements. The method is based on the exact decomposition of the global small measurement noise algebraic Riccati equation into exact pure-slow and pure-fast algebraic Riccati equations. An example is included in order to demonstrate the proposed method.

1.
Anderson, B., and J. Moore, 1979, Optimal Filtering, Prentice Hall, Englewood Cliffs, NJ.
2.
Avramovic
B.
,
Kokotovic
P.
,
Winkelman
J.
, and
Chow
J.
,
1980
.
Area Decomposition for Electro-Mechanical Models of Power Systems
,
Automatica
, Vol.
16
, pp.
637
648
.
3.
Bernstein
D.
, and
Hyland
D.
,
1985
, “
The Optimal Projection Equations for Reduced-Noise State Estimation
,”
IEEE Trans. Automatic Control
, Vol.
AC-30
, pp.
583
585
.
4.
Chang
K.
,
1972
, “
Singular Perturbations of a General Boundary Value Problem
,”
SIAM J. Math. Anal
, Vol.
3
, pp.
502
526
.
5.
Doyle
J.
,
1978
, “
Guaranteed Margins for LQG Regulators
,”
IEEE Trans. Automatic Control
, Vol.
AC-23
, pp.
756
757
.
6.
Francis
B.
,
1979
, “
The Optimal Linear-Quadratic Time-Invariant Regulator with Cheap Control
,”
IEEE Trans. Automatic Control
, Vol.
AC-24
, pp.
616
621
.
7.
Gajic
Z.
,
1986
, “
Numerical Fixed Point Solution for Near-Optimum Regulators of Linear Quadratic Gaussian Control Problems for Singularly Perturbed Systems
,”
Int. J. Control
, Vol.
43
, pp.
373
387
.
8.
Gajic, Z., and X. Shen, 1993, Parallel Algorithm for Optimal Control of Large Scale Linear Systems, Springer-Verlag, London.
9.
Gajic
Z.
, and
Lim
M.
,
1994
, “
A New Filtering Method for Linear Singularly Perturbed Systems
,”
IEEE Trans. Automatic Control
, Vol.
AC-39
, pp.
1952
1955
.
10.
Friedland
B.
,
1971
, “
Limiting Forms for Optimal Stochastic Linear Regulators
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
93
, pp.
134
141
.
11.
Haddad
A.
,
1976
, “
Linear Filtering of Singularly Perturbed Systems
,”
IEEE Trans. Automatic Control
, Vol.
AC-21
, pp.
515
519
.
12.
Haddad
A.
, and
Kokotovic
P.
,
1977
, “
Stochastic Control of Linear Singularly Perturbed Systems
,”
IEEE Trans. Automatic Control
, Vol.
AC-22
, pp.
815
821
.
13.
Haddad
W.
, and
Bernstein
D.
,
1987
, “
The Optimal Projection Equations for Reduced-Noise State Estimation: The Singular Measurement Noise
,”
IEEE Trans. Automatic Control
, Vol.
AC-32
, pp.
1135
1143
.
14.
Halevi
Y.
,
1986
, “
Extended Limiting Forms of Optimum Observers and LQG Regulators
,”
Int. J. Control
, Vol.
43
, pp.
193
212
.
15.
Halevi
Y.
,
1989
, “
The Optimal Reduced-Order Estimator for Systems with Singular Measurement Noise
,”
IEEE Trans. Automatic Control
, Vol.
AC-34
, pp.
777
781
.
16.
Hass
V.
,
1984
, “
Reduced Order State Estimation for Linear Systems with Exact Measurements
,”
Automatica
, Vol.
20
, pp.
225
229
.
17.
Huey, M., and Z. Gajic, 1993, Recursive Approach to High Gain and Cheap Control Problems, Proc. World Congress of IFAC, Vol. 9, pp. 289–292, Sydney, Australia.
18.
Jameson
A.
, and
O’Malley
R.
,
1975
, “
Cheap Control of Time-Invariant Regulator
,”
Applied Math. and Optimization
, Vol.
1
, pp.
337
354
.
19.
Khalil
H.
, and
Gajic
Z.
,
1984
, “
Near-Optimum Regulators for Stochastic Linear Singularly Perturbed Systems
,”
IEEE Trans. Automatic Control
, Vol.
AC-29
, pp.
531
541
.
20.
Kokotovic, P., H. Khalil, and J. O’Reilly, 1986, Singular Perturbation Methods in Control: Analysis and Design, Academic Press, Orlando.
21.
Kwakemaak
H.
, and
Sivan
R.
,
1972
, “
The Maximally Achievable Accuracy of Linear Optimal Regulators, and Linear Optimal Filters
,”
IEEE Trans. Automatic Control
, Vol.
AC-17
, pp.
79
86
.
22.
Medanic
J.
,
1982
, “
Geometric Properties of Invariant Manifolds of the Riccati Equation
,”
IEEE Trans. Automatic Control
, Vol.
AC-27
, pp.
670
677
.
23.
Moylan
P.
,
1974
, “
A Note on Kalman-Bucy Filters With Zero Measurement Noise
,”
IEEE Trans. Automatic Control
, Vol.
AC-19
,
263
264
.
24.
Sachs, S., 1980, Asymptotic Analysis of Linear Filtering Problems, Ph.D. thesis, Case Western Reserve University.
25.
Sachs, S., 1981, “Asymptotic Analysis of the Small Observation Noise Linear Filtering Problems,” Proc. American Control Conference, Sharlottesville, WA-4A.
26.
Shaked
U.
,
1986
, “
Solution in the z-Domain to the Discrete-Time Stationary Kalman Filtering Problem for Systems with Perfect Measurements
,”
IEEE Trans. Automatic Control
, Vol.
AC-31
, pp.
1156
1159
.
27.
Soroka
E.
, and
Shaked
U.
,
1988
, “
The LQG Optimal Regulator Problem for Systems with Perfect Measurements; Explicit Solution, Properties and Application to Practical Designs
,”
IEEE Trans. Automatic Control
, Vol.
AC-33
, pp.
941
944
.
28.
Su
W.
,
Gajic
Z.
, and
Shen
X.
,
1992
, “
The Exact Slow-Fast Decomposition of the Algebraic Riccati Equation of Singularly Perturbed Systems
,”
IEEE Trans. Automatic Control
, Vol.
AC-37
, pp.
1456
1459
.
29.
Teneketzis
D.
, and
Sandell
N.
,
1977
, “
Linear Regulator Design for Stochastic Systems by Multiple Time-Scale Method
,”
IEEE Trans. Automatic Control
, Vol.
AC-22
, pp.
615
621
.
30.
Wilkinson, J., 1965, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
This content is only available via PDF.
You do not currently have access to this content.