This paper presents a new solution procedure for simulation dynamics of multibody systems. The method is applicable to open chains with general interbody constraints. It is based on obtaining an explicit solution for the joint constraint forces by means of iterative techniques. We show that the algorithm possesses a parallel structure which matches the topology of the system. Numerical results for an anthropomorphic manipulator indicate that the conjugate-gradient Jacobi iteration is computationally most efficient. An estimate for the parallel efficiency of this scheme is obtained by combining the theoretical bound for parallel complexity with an approximate overhead cost associated with parallel implementation.

This content is only available via PDF.
You do not currently have access to this content.