In the last decade, small-diameter tunneling technology has improved considerably. As a result, the use of this technology is expected to increase dramatically [1]. For example, one microtunneling system can produce microtunnels ranging in diameter from 45 to 150 mm by using mechanically assisted high-pressure, low-volume fluid jets [2]. However, no dynamic model or automatic direction control has yet been designed for this technology. This paper describes a simplified dynamic model for the amount of vertical directional correction for a small-diameter tunneling robot designed to install telecommunication cable conduit. This model can also be used for the horizontal direction. The direction control of a tunneling robot conventionally depends on both the experience and intuition of the operator, and there have been no studies with regard to its automation. Therefore, in order to establish an automatic control technology for a small-diameter tunneling robot, we construct a simplified dynamic model for the amount of directional correction of the robot taking its past trajectory into consideration. We can make a dynamic simulator for the tunneling robot using this dynamic model. With this simulator, we can establish control laws for robot control. So, this study can contribute to the development of automatic control technology for a tunneling robot.

This content is only available via PDF.
You do not currently have access to this content.