This paper presents a preliminary system study of a longitudinal control law for a platoon of nonidentical vehicles using a simplified nonlinear model for the vehicle dynamics. This study advances the art of automatic longitudinal control for a platoon of vehicles in the sense that it considers longer platoons composed of nonidentical vehicles; furthermore, the longitudinal control laws presented in this study take advantage of communication possibilities not available in the recent past. We assume that for i = 1, 2, . . . vehicle i knows at all times vl and al (the velocity and acceleration of the lead vehicle) in addition to the distance between vehicle i and the preceding vehicle, i − 1. A control law is developed and is tested on a simulation of a platoon of 16 vehicles where the lead vehicle increases its velocity at a rate of 3 m.s−2; it is shown that the distance between successive vehicles does not change by more than 0.12 m in spite of variations in the masses of the vehicles (from the nominal), of communication delay and of noise in measurements.

This content is only available via PDF.
You do not currently have access to this content.