A new practical non-Gaussian linearization method is developed for the problem of the dynamic response of a stable nonlinear system under both stochastic parametric and external excitations. The non-Gaussian linearization system is derived through a non-Gaussian density that is constructed as the weighted sum of undetermined Gaussian densities. The undetermined Gaussian parameters are then derived through solving a set of nonlinear algebraic moment relations. The method is illustrated by a Duffing-type stochastic system with/without parametric noise excited term. The accuracy in predicting the stationary and nonstationary variances by the present approach is compared with some exact solutions and Monte Carlo simulations.
Issue Section:
Research Papers
This content is only available via PDF.
Copyright © 1992
by The American Society of Mechanical Engineers
You do not currently have access to this content.