In this technical brief, the stabilization of an uncertain system with a saturating actuator and an additive disturbance is discussed. The uncertainties and the additive disturbances may be linear, nonlinear, and/or time-varying, but only the upper bounds are assumed known. A linear state feedback control law stabilizes the uncertain system with additive disturbance, and guarantees that, ultimately, the system response lies in a neighborhood of the origin. But the neighborhood cannot be arbitrarily made small by the linear state feedback controller. The proposed approach does not need the solution of a Lyapunov equation or a Riccati equation, therefore the computational burden can be decreased. An example illustrates the application of the proposed method.

This content is only available via PDF.
You do not currently have access to this content.