A nonlinear, lumped parameter pantograph model including geometric and coulomb friction nonlinearities and variable stiffness has been developed. The model performance has been compared with experimental dynamic response data measured on a prototype pantograph. Responses of the model and the experimental data including subharmonic and harmonic resonances are in close agreement for motions excited by comparable forcing functions for input frequencies of 0 to 12 Hz. The model has been used to identify the primary parameters and nonlinear effects which influence dynamic pantograph performance.

This content is only available via PDF.
You do not currently have access to this content.