Control strategies to accomplish precise point-to-point positioning of flexible structures are discussed. First, the problem is formulated and solved in closed form using a linear quadratic optimal control technique for a simple system with only one rigid and one flexible mode; the resulting analytical solutions are examined in both the time and frequency domain. In addition, the necessary and sufficient condition for zero residual vibration is derived which simply states that the Laplace transform of the time bounded control input must vanish at the system poles. This criteria is then used to highlight the common features of existing techniques and to outline an alternative design procedure for precise position control of more complicated structures having multiple flexible modes.

You do not currently have access to this content.