Studies of the use of oscillations for control purposes continue to reveal new practically important properties unique to the oscillatory open and closed loop control laws. The goal of this paper is to enlarge the available set of analytical tools for such studies by introducing a method of analysis of the qualitative changes in the behavior of dynamical systems caused by the zero mean parametric excitations. After summarizing and slightly refining a technique developed previously for the finite dimensional nonlinear systems, we consider an extension of this technique to a class of distributed parameter systems (DPS) governed by semilinear parabolic equations. The technique presented is illustrated by several examples.

This content is only available via PDF.
You do not currently have access to this content.