Many applications of industrial robot automation can be made possible or improved with the introduction of a force feedback system. The task of weld bead removal is being studied in an effort to develop a real time force controlled intelligent system. The process of weld bead grinding must be analyzed and modelled to develop a weld bead removal system. Previous research has developed and verified static models of grinding. This paper describes a dynamic model developed from the grinding characteristics demonstrated previously. An experimental grinding system was built and the measured process behavior was compared with a grinding simulation based on the dynamic model. The profile of the specimen was measured prior to and subsequent to grinding. The initial profile was used as an input to the simulation, and the output from the simulation was compared with the final measured profile. A variety of conditions was tested. For typical mean cut depths of 0.10 mm the simulator predicted the final height of the grinding specimen within a standard deviation of 0.02 mm. The dynamic model was verified within 10 percent of the actual results.

This content is only available via PDF.
You do not currently have access to this content.