The problem of on-line optimal control of large scale interconnected nonlinear dynamic systems is considered using duality. A well-known goal coordination algorithm is used involving two levels of computation: at level 1 a decomposed Lagrangian function is minimized with respect to its subsystem states and controls for a given multiplier value obtained by maximizing the dual with respect to the coordinating constraints at level 2. The level 1 computation is carried out for nonlinear problems using a quasilinear expansion from which the resulting two point boundary value problems are solved using a procedure due to Pereyra. The level 2 computation is carried out using conjugate gradients. A numerical example is given and some potential application areas in process and factory automation are mentioned.

This content is only available via PDF.
You do not currently have access to this content.