The instantaneous velocity of a rigid body in space is characterized by an angular and translational velocity. By representing the angular velocity as a matrix and the translational component as a vector the velocity of any point in the rigid body may be found if the position of the point and the parameters of the angular and translational velocities are known. Alternatively, the parameters of the rigid body velocity may be determined if the velocity and position of three points fixed in the body are known. In this paper, a new matrix-theory-based method is derived for determining the instantaneous velocity parameters of rigid body motion in terms of the velocity and position of three noncollinear points fixed in the body. The method is shown to possess certain advantages over traditional vectoral solutions to the same problem.

This content is only available via PDF.
You do not currently have access to this content.