A fast computational approach is considered for solving of a time-invariant operator Riccati equation accompanied with the optimal steady-state filtering problem of a distributed-parameter system. The partitioned filter with the effective initialization is briefly explained and some relationships between its filter and the well-known Kalman-type filter are shown in terms of the Meditch-type fixed-point smoother in Hilbert spaces. Then, with the aid of these results the time doubling algorithm is proposed to solve the steady-state solution of the operator Riccati equation. Some numerical examples are included and a comparison of the computation time required by the proposed method is made with other algorithms—the distributed partitioned numerical algorithm, and the Runge-Kutta method. It is found that the proposed algorithm is approximately from 40 to 50 times faster than the classical Runge-Kutta method with constant step-size for the case of 9th order mode Fourier expansion.

This content is only available via PDF.
You do not currently have access to this content.