A new conceptually simple approach to controlling compliant motions of a robot manipulator is presented. The “hybrid” technique described combines force and torque information with positional data to satisfy simultaneous position and force trajectory constraints specified in a convenient task related coordinate system. Analysis, simulation, and experiments are used to evaluate the controller’s ability to execute trajectories using feedback from a force sensing wrist and from position sensors found in the manipulator joints. The results show that the method achieves stable, accurate control of force and position trajectories for a variety of test conditions.

This content is only available via PDF.
You do not currently have access to this content.