A closed-form solution of the governing, nonlinear equation for free vibrations of a single-degree-of-freedom system, without stops, under combined viscous and Coulomb damping is first obtained. This is much less involved than forced-response considerations of the same system (with or without stops) the solution of which problem was first obtained by Den Hartog [1]. This note contains the first derivation, as far as the author is aware of, of the equation for the amplitude decay curve (or envelope) for such a system vibrating freely under no-stop conditions. This equation is presented in a form which enables the components of the damping force to be determined from the system’s experimental plot (or record) of displacement versus time.

This content is only available via PDF.
You do not currently have access to this content.