Abstract

Bayesian optimization (BO) is an effective surrogate-based method that has been widely used to optimize simulation-based applications. While the traditional Bayesian optimization approach only applies to single-fidelity models, many realistic applications provide multiple levels of fidelity with various levels of computational complexity and predictive capability. In this work, we propose a multi-fidelity Bayesian optimization method for design applications with both known and unknown constraints. The proposed framework, called sMF-BO-2CoGP, is built on a multi-level CoKriging method to predict the objective function. An external binary classifier, which we approximate using a separate CoKriging model, is used to distinguish between feasible and infeasible regions. The sMF-BO-2CoGP method is demonstrated using a series of analytical examples and a flip-chip application for design optimization to minimize the deformation due to warping under thermal loading conditions.

Article PDF first page preview

Article PDF first page preview
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.