Abstract

Explicit dynamic analysis has proven to be advantageous when simulating shock and impact loading, and very small time-scale events. In this article, the feasibility of using a background mesh of B-spline elements for immersed boundary explicit dynamic simulation is studied. In this approach, the geometry is immersed in a background mesh consisting of uniform regular shaped elements to avoid mesh generation difficulties. The boundary conditions are applied using the step boundary method, which uses the equations of the boundaries to construct trial functions that satisfy the essential boundary conditions. An isoparametric formulation is presented for quadratic and cubic B-spline elements and their shape functions are derived from the classical recursive definition of B-splines. The effectiveness of mass diagonalization for B-spline elements is also explored. This approach is validated using several examples by comparing with modal superposition solutions as well as past work using traditional finite element analysis (FEA) and analytical solutions when available.

References

References
1.
Wu
,
S. R.
, and
Gu
,
L.
,
2012
,
Explicit Nonlinear Dynamics
,
John Wiley & Sons
,
New York
.
2.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2005
,
The Finite Element Method: Its Basis and Fundamentals
, 6th ed.,
Elsevier Butterworth-Heinemann
,
Burlington, MA
.
3.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
4.
Danielson
,
K. T.
, and
O’Daniel
,
J. L.
,
2011
, “
Reliable Second-Order Hexahedral Elements for Explicit Methods in Nonlinear Solid Dynamics
,”
Int. J. Numer. Methods Eng.
,
85
(
9
), pp.
1073
1102
. 10.1002/nme.3003
5.
Danielson
,
K. T.
,
2014
, “
Fifteen Node Tetrahedral Elements for Explicit Methods in Nonlinear Solid Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
272
, pp.
160
180
. 10.1016/j.cma.2014.01.012
6.
Danielson
,
K. T.
,
Adley
,
M. D.
, and
Williams
,
T. N.
,
2016
, “
Second-Order Finite Elements for Hex-Dominant Explicit Methods in Nonlinear Solid Dynamics
,”
Finite Elem. Anal. Des.
,
119
, pp.
63
77
. 10.1016/j.finel.2016.02.008
7.
Belytschko
,
T.
,
Krongauz
,
Y.
,
Organ
,
D.
,
Fleming
,
M.
, and
Krysl
,
P.
,
1996
, “
Meshless Methods: An Overview and Recent Developments
,”
Comput. Methods Appl. Mech. Eng.
,
139
(
1–4
), pp.
3
47
. 10.1016/S0045-7825(96)01078-X
8.
Fries
,
T. P.
, and
Belytschko
,
T.
,
2010
, “
Review: The Extended/Generalized Finite Element Method: An Overview of the Method and Its Applications
,”
Int. J. Numer. Methods Eng.
,
84
(
3
), pp.
253
304
. 10.1002/nme.2914
9.
Belytschko
,
T.
,
Parimi
,
C.
,
Moes
,
N.
,
Usui
,
S.
, and
Sukumar
,
N.
,
2003
, “
Structured Extended Finite Element Methods for Solids Defined by Implicit Surfaces
,”
Int. J. Numer. Methods Eng.
,
56
(
4
), pp.
609
635
. 10.1002/nme.686
10.
Kumar
,
A. V.
,
2019
, “
Survey of Immersed Boundary Approaches for Finite Element Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
041003
. 10.1115/1.4045054
11.
Löhner
,
R.
,
Cebral
,
R. J.
,
Camelli
,
F. E.
,
Appanaboyina
,
S.
,
Baum
,
J. D.
,
Mestreau
,
E. L.
, and
Soto
,
O. A.
,
2008
, “
Adaptive Embedded and Immersed Unstructured Grid Techniques
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
25–28
), pp.
2173
2197
. 10.1016/j.cma.2007.09.010
12.
Glowinski
,
R.
, and
Kuznetsov
,
Y.
,
2007
, “
Distributed Lagrange Multipliers Based on Fictitious Domain Method for Second Order Elliptic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
8
), pp.
1498
1506
. 10.1016/j.cma.2006.05.013
13.
Shillinger
,
D.
, and
Ruess
,
M.
,
2015
, “
The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models
,”
Arch. Comput. Methods Eng.
,
22
(
3
), pp.
391
455
. 10.1007/s11831-014-9115-y
14.
Burla
,
R.
, and
Kumar
,
A. V.
,
2008
, “
Implicit Boundary Method for Analysis Using Uniform B-Spline Basis and Structured Grid
,”
Int. J. Numer. Methods Eng.
,
76
(
13
), pp.
1993
2028
. 10.1002/nme.2390
15.
Kumar
,
A. V.
,
Padmanabhan
,
S.
, and
Burla
,
R. K.
,
2008
, “
Implicit Boundary Method for Finite Element Analysis Using Non-Conforming Mesh or Grid
,”
Int. J. Numer. Methods Eng.
,
74
(
9
), pp.
1421
1447
. 10.1002/nme.2216
16.
Barbosa
,
H. J. C.
, and
Hughes
,
T. J. R.
,
1991
, “
The Finite Element Method With Lagrangian Multipliers on the Boundary: Circumventing the Babuška-Brezzi Condition
,”
Comput. Methods Appl. Mech. Eng.
,
85
(
1
), pp.
109
128
. 10.1016/0045-7825(91)90125-P
17.
Hautefeuille
,
M.
,
Annavarapu
,
C.
, and
Dolbow
,
J. E.
,
2012
, “
Robust Imposition of Dirichlet Boundary Conditions on Embedded Surfaces
,”
Int. J. Numer. Methods Eng.
,
90
(
1
), pp.
40
64
. 10.1002/nme.3306
18.
Sanches
,
R. A. K.
,
Bornemann
,
P. B.
, and
Cirak
,
F.
,
2011
, “
Immersed b-Spline (i-Spline) Finite Element Method for Geometrically Complex Domains
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1432
1445
. 10.1016/j.cma.2010.12.008
19.
Periyasamy
,
P. S.
, and
Kumar
,
A. V.
,
2012
, “
Mesh Independent Analysis of Shell-Like Structures
,”
Int. J. Numer. Methods Eng.
,
91
(
5
), pp.
472
490
. 10.1002/nme.4278
20.
Chen
,
H.
, and
Kumar
,
A. V.
,
2014
, “
Method for Imposing Boundary Conditions on Reissner-Mindlin Plates for Analysis Using Structured Background Mesh
,”
Comput. Struct.
,
138
, pp.
1
11
. 10.1016/j.compstruc.2014.02.004
21.
Zhang
,
Z.
, and
Kumar
,
A. V.
,
2017
, “
Immersed Boundary Modal Analysis and Forced Vibration Simulation Using Step Boundary Method
,”
Finite Elem. Anal. Des.
,
126
, pp.
1
12
. 10.1016/j.finel.2016.11.006
22.
Kantorovich
,
L. V.
, and
Krylov
,
V. I.
,
1958
,
Approximate Methods for Higher Analysis
,
Interscience Publishers
,
New York
.
23.
Höllig
,
K.
,
2003
,
Finite Element Methods With B-Splines
,
SIAM
,
Philadelphia, PA
.
24.
Rvachev
,
V. L.
, and
Shieko
,
T. I.
,
1995
, “
R-Functions in Boundary Value Problems in Mechanics
,”
ASME Appl. Mech. Rev.
,
48
(
4
), pp.
151
188
. 10.1115/1.3005099
25.
Shapiro
,
V.
, and
Tsukanov
,
I.
,
1999
, “
Meshfree Simulation of Deforming Domains
,”
Comput. Aided Des.
,
31
(
7
), pp.
459
471
. 10.1016/S0010-4485(99)00043-3
26.
Osher
,
S.
, and
Fedkiw
,
R.
,
2002
,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer-Verlag
,
New York
.
27.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
. 10.1016/j.cma.2004.10.008
28.
Cottrell
,
J. A.
,
Reali
,
A.
,
Bazilevs
,
Y.
, and
Hughes
,
T. J. R.
,
2006
, “
Isogeometric Analysis of Structural Vibrations
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5257
5296
. 10.1016/j.cma.2005.09.027
29.
Piegl
,
L. A.
, and
Tiller
,
W.
,
1996
,
The NURBS Book
, 2nd ed.,
Springer
,
New York
.
30.
Farin
,
G.
,
2002
,
Curves and Surfaces for CAGD: A Practical Guide
, 5th ed.,
Morgan Kaufmann publishers
,
New York
.
31.
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
, and
Reali
,
A.
,
2007
, “
Studies of Refinement and Continuity in Isogeometric Structural Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
41–44
), pp.
4160
4183
. 10.1016/j.cma.2007.04.007
32.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
,
2000
,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
33.
Hallquist
,
J. O.
,
2006
,
LS-DYNA3D Theory Manual
.
Livermore Software Technology Corporation
,
Livermore, CA
.
34.
Noh
,
G.
, and
Bathe
,
K. J.
,
2013
, “
An Explicit Time Integration Scheme for the Analysis of Wave Propagations
,”
Comput. Struct.
,
129
, pp.
178
193
. 10.1016/j.compstruc.2013.06.007
35.
Koteras
,
J. R.
,
Gullerud
,
A. S.
,
Crane
,
N. K.
, and
Hales
,
J. D.
,
2006
, “
Presto User’s Guide, Version 2.6
,”
Report SAND2006-6093
,
Sandia National Laboratories
,
Albuquerque, NM
.
36.
Elguedj
,
T.
,
Gravouil
,
A.
, and
Maigre
,
H.
,
2009
, “
An Explicit Dynamic Extended Finite Element Method. Part 1: Mass Lumping for Arbitrary Enrichment Functions
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
30–32
), pp.
2297
2317
. 10.1016/j.cma.2009.02.019
37.
MacNeal
,
R. H.
, and
Harder
,
R. L.
,
1985
, “
A Proposed Set of Problems to Test Finite Element Accuracy
,”
Finite Elem. Anal. Des.
,
1
(
1
), pp.
3
20
. 10.1016/0168-874X(85)90003-4
You do not currently have access to this content.