Abstract

Unknown environmental noise and varying operation conditions negatively affect gear fault diagnosis (GFD) performance. In this paper, the sample/feature hybrid transfer learning (TL) strategies are adopted for GFD under varying working conditions, where source working conditions are considered to help the learning of target working conditions. Here, a multiple domains-feature vector is extracted where certain insensitive features offset the adverse effects of varying working conditions on sensitive features, including time domain, frequency domain, noise domain, and torque domain. Before TL, the signed-rank and chi-square test-based similarity estimation frame is adopted to select source data sets, aiming to reduce the possibility of negative transfer. Then, the hybrid transfer model, including the fast TrAdaBoost and partial model-based transfer (PMT) algorithm, is carried out, whose weights are allocated in sample and feature, respectively. Related experiments were conducted on the drivetrain dynamics simulator, which proves that feature transfer is more suitable for low-quality source domains while sample transfer is more suitable for high-quality source domains. Compared with non-transfer strategy, transfer learning is a useful tool to solve a practical GFD problem when facing with multiple working conditions, thus enhancing the universality and application value in fault diagnosis field.

References

References
1.
Wang
,
J.
,
Cheng
,
F.
,
Qiao
,
W.
, and
Qu
,
L.
,
2018
, “
Multiscale Filtering Reconstruction for Wind Turbine Gearbox Fault Diagnosis Under Varying-Speed and Noisy Conditions
,”
IEEE Trans. Ind. Electron.
,
65
(
5
), pp.
4268
4278
. 10.1109/TIE.2017.2767520
2.
Li
,
Y.
,
Ding
,
K.
,
He
,
G.
, and
Jiao
,
X.
,
2018
, “
Non-Stationary Vibration Feature Extraction Method Based on Sparse Decomposition and Order Tracking for Gearbox Fault Diagnosis
,”
Measurement
,
124
(
8
), pp.
453
469
. 10.1016/j.measurement.2018.04.063
3.
Akar
,
M.
, and
Gercekcioglu
,
H. S.
,
2017
, “
Instantaneous Power Factor Signature Analysis for Efficient Fault Diagnosis in Inverter Fed Three Phased Induction Motors
,”
Int. J. Hydrogen Energy
,
42
(
12
), pp.
8338
8345
. 10.1016/j.ijhydene.2017.02.151
4.
Kim
,
J.
,
Shin
,
S.
,
Lee
,
S. B.
,
Gyftakis
,
K. N.
,
Drif
,
M.
, and
Cardoso
,
A. J. M.
,
2015
, “
Power Spectrum-Based Detection of Induction Motor Rotor Faults for Immunity to False Alarms
,”
IEEE Trans. Energy Convers.
,
30
(
3
), pp.
1123
1132
. 10.1109/TEC.2015.2423315
5.
Cui
,
L.
,
Huang
,
J.
,
Zhang
,
F.
, and
Chu
,
F.
,
2019
, “
HVSRMS Localization Formula and Localization Law: Localization Diagnosis of a Ball Bearing Outer Ring Fault
,”
Mech. Syst. Sig. Process.
,
120
(
4
), pp.
608
629
. 10.1016/j.ymssp.2018.09.043
6.
Gan
,
M.
,
Wang
,
C.
, and
Zhu
,
C.
,
2016
, “
Construction of Hierarchical Diagnosis Network Based on Deep Learning and Its Application in the Fault Pattern Recognition of Rolling Element Bearings
,”
Mech. Syst. Sig. Process.
,
72
(
5
), pp.
92
104
. 10.1016/j.ymssp.2015.11.014
7.
Ye
,
F.
,
Zhang
,
Z.
,
Chakrabarty
,
K.
, and
Gu
,
X.
,
2016
, “
Adaptive Board-Level Functional Fault Diagnosis Using Incremental Decision Trees
,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
,
35
(
2
), pp.
323
336
. 10.1109/TCAD.2015.2459046
8.
Li
,
N.
,
Hao
,
H.
,
Gu
,
Q.
,
Wang
,
D.
, and
Hu
,
X.
,
2017
, “
A Transfer Learning Method for Automatic Identification of Sandstone Microscopic Images
,”
Comput. Geosci.
,
103
(
7
), pp.
111
121
. 10.1016/j.cageo.2017.03.007
9.
Ding
,
Z.
,
Nasrabadi
,
N. M.
, and
Fu
,
Y.
,
2018
, “
Semi-Supervised Deep Domain Adaptation via Coupled Neural Networks
,”
IEEE Trans. Image Process.
,
27
(
11
), pp.
5214
5224
. 10.1109/TIP.2018.2851067
10.
Jiang
,
M.
,
Huang
,
Z.
,
Qiu
,
L.
,
Huang
,
W.
, and
Yen
,
G. G.
,
2018
, “
Transfer Learning-Based Dynamic Multiobjective Optimization Algorithms
,”
IEEE Trans. Evol. Comput.
,
22
(
4
), pp.
501
514
. 10.1109/TEVC.2017.2771451
11.
Hussain
,
M.
,
Bird
,
J. J.
, and
Faria
,
D. R.
,
2019
, “
A Study on CNN Transfer Learning for Image Classification
,”
Adv. Intell. Syst. Comput.
,
840
(
1
), pp.
191
202
. 10.1007/978-3-319-97982-3_16
12.
Pan
,
S. J.
, and
Yang
,
Q.
,
2010
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
. 10.1109/TKDE.2009.191
13.
Banzato
,
T.
,
Bonsembiante
,
F.
,
Aresu
,
L.
,
Gelain
,
M. E.
,
Burti
,
S.
, and
Zotti
,
A.
,
2018
, “
Use of Transfer Learning to Detect Diffuse Degenerative Hepatic Diseases From Ultrasound Images in Dogs: A Methodological Study
,”
Vet. J.
,
233
(
3
), pp.
35
40
. 10.1016/j.tvjl.2017.12.026
14.
Rajagopal
,
A. K.
,
Subramanian
,
R.
,
Ricci
,
E.
,
Vieriu
,
R. L.
,
Lanz
,
O.
,
Kalpathi R.
,
R.
, and
Sebe
,
N.
,
2014
, “
Exploring Transfer Learning Approaches for Head Pose Classification From Multi-View Surveillance Images
,”
Int. J. Comput. Vision
,
109
(
1–2
), pp.
146
167
. 10.1007/s11263-013-0692-2
15.
Lu
,
W.
,
Liang
,
B.
,
Cheng
,
Y.
,
Meng
,
D.
,
Yang
,
J.
, and
Zhang
,
T.
,
2017
, “
Deep Model Based Domain Adaptation for Fault Diagnosis
,”
IEEE Trans. Ind. Electron.
,
64
(
3
), pp.
2296
2305
. 10.1109/TIE.2016.2627020
16.
Cao
,
P.
,
Zhang
,
S.
, and
Tang
,
J.
,
2018
, “
Preprocessing-Free Gear Fault Diagnosis Using Small Datasets With Deep Convolutional Neural Network-Based Transfer Learning
,”
IEEE Access
,
6
(
5
), pp.
26241
26253
. 10.1109/ACCESS.2018.2837621
17.
Shao
,
S.
,
McAleer
,
S.
,
Yan
,
R.
, and
Baldi
,
P.
,
2019
, “
Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning
,”
IEEE Trans. Ind. Informatics
,
15
(
4
), pp.
2446
2455
. 10.1109/TII.2018.2864759
18.
Shen
,
F.
,
Langari
,
R.
, and
Yan
,
R.
,
2020
, “
Transfer Between Multiple Machine Plants: A Modified Fast Self-Organizing Feature Map and Two-Order Selective Ensemble Based Fault Diagnosis Strategy
,”
Measurement
,
151
(
2
), pp.
1
17
. 10.1016/j.measurement.2019.107155
19.
Xie
,
J.
,
Zhang
,
L.
,
Duan
,
L.
, and
Wang
,
L.
,
2016
, “
On Cross-Domain Feature Fusion in Gearbox Fault Diagnosis Under Various Operating Conditions Based on Transfer Component Analysis
,”
2016 IEEE International Conference on Prognostics and Health Management
,
Ottawa, ON, Canada
,
June 20–23
.
20.
Wang
,
J.
,
Xie
,
J.
,
Zhang
,
L.
, and
Duan
,
L.
,
2016
, “
A Factor Analysis Based Transfer Learning Method for Gearbox Diagnosis Under Various Operating Conditions
,”
International Symposium on Flexible Automation
,
Cleveland, OH
,
Aug. 1–3
, pp.
81
86
.
21.
Weiss
,
K.
,
Khoshgoftaar
,
T. M.
, and
Wang
,
D. D.
,
2016
, “
A Survey of Transfer Learning
,”
J. Big Data
,
3
(
1
), p.
2016
. 10.1186/s40537-016-0043-6
22.
Zheng
,
H. L.
,
Wang
,
R. X.
,
Yang
,
Y. T.
,
Yin
,
J. C.
,
Li
,
Y. B.
,
Li
,
Y. Q.
, and
Xu
,
M. Q.
,
2019
, “
Cross-Domain Fault Diagnosis Using Knowledge Transfer Strategy: A Review
,”
IEEE Access
,
7
(
9
), pp.
115368
115377
. 10.1109/ACCESS.2019.2936243
23.
Rama
,
K. K.
, and
Ramachandran
,
K. I.
,
2018
, “
Machinery Bearing Fault Diagnosis Using Variational Mode Decomposition and Support Vector Machine as a Classifier
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
310
(
2018
), pp.
1
10
. 10.1088/1757-899X/310/1/012076
24.
Sun
,
J.
,
Yan
,
C.
, and
Wen
,
J.
,
2018
, “
Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning
,”
IEEE Trans. Instrum. Meas.
,
67
(
1
), pp.
185
195
. 10.1109/TIM.2017.2759418
25.
Tra
,
V.
,
Kim
,
J.
,
Khan
,
S. A.
, and
Kim
,
J.-M.
,
2017
, “
Incipient Fault Diagnosis in Bearings Under Variable Speed Conditions Using Multiresolution Analysis and a Weighted Committee Machine
,”
J. Acoust. Soc. Am.
,
142
(
1
), pp.
EL35
EL41
. 10.1121/1.4991329
26.
Bessous
,
N.
,
Zouzou
,
S. E.
,
Bentrah
,
W.
,
Sbaa
,
S.
, and
Sahraoui
,
M.
,
2018
, “
Diagnosis of Bearing Defects in Induction Motors Using Discrete Wavelet Transform
,”
Int. J. Syst. Assur. Eng. Manage.
,
9
(
2
), pp.
335
343
. 10.1007/s13198-016-0459-6
27.
Verstraete
,
D.
,
Ferrada
,
A.
,
Droguett
,
E. L.
,
Meruane
,
V.
, and
Modarres
,
M.
,
2017
, “
Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Analysis of Rolling Element Bearings
,”
Shock and Vib.
,
2017
(
10
), pp.
1
17
. 10.1155/2017/5067651
28.
Fang
,
Z.
,
Yang
,
X.
,
Han
,
L.
, and
Liu
,
X.
,
2019
, “
A Sequentially Truncated Higher Order Singular Value Decomposition-Based Algorithm for Tensor Completion
,”
IEEE Trans. Cybern.
,
49
(
5
), pp.
1956
1967
. 10.1109/TCYB.2018.2817630
29.
Xu
,
J.
,
Tong
,
S.
,
Cong
,
F.
, and
Chen
,
J.
,
2017
, “
Slip Hankel Matrix Series-Based Singular Value Decomposition and Its Application for Fault Feature Extraction
,”
IET Sci., Meas. Technol.
,
11
(
4
), pp.
464
472
. 10.1049/iet-smt.2016.0176
30.
Moriyama
,
T.
, and
Maesono
,
Y.
,
2018
, “
Smoothed Alternatives of the Two-Sample Median and Wilcoxon’s Rank Sum Tests
,”
Statistics
,
52
(
5
), pp.
1096
1115
. 10.1080/02331888.2018.1469634
31.
Rosenblatt
,
J. D.
, and
Benjamini
,
Y.
,
2018
, “
On Mixture Alternatives and Wilcoxon’s Signed-Rank Test
,”
Am. Stat.
,
72
(
4
), pp.
344
347
. 10.1080/00031305.2017.1360795
32.
Hess
,
A. S.
, and
Hess
,
J. R.
,
2017
, “
Understanding Tests of the Association of Categorical Variables: The Pearson Chi-Square Test and Fisher’s Exact Test
,”
Transfusion
,
57
(
4
), pp.
877
879
. 10.1111/trf.14057
33.
Chen
,
Z.
,
Lin
,
T.
, and
Wang
,
K.
,
2017
, “
A Powerful Variant-Set Association Test Based on Chi-Square Distribution
,”
Genetics
,
207
(
3
), pp.
903
910
. 10.1534/genetics.117.300287
34.
Freund
,
Y.
, and
Schapire
,
R. E.
,
1997
, “
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
,”
J. Comput. Syst. Sci.
,
55
(
1
), pp.
119
139
. 10.1006/jcss.1997.1504
35.
Kobayashi
,
K.
,
Fukasawa
,
K.
, and
Masuyama
,
N.
,
2018
, “
The Observation of the Vein Distribution of a Partial Toe-Transfer Flaps with a Short Vascular Pedicle
,”
J. Hand Surgery (Asian-Pacific Volume)
,
23
(
2
), pp.
227
231
. 10.1142/S242483551850025X
36.
Tang
,
B.
,
Song
,
T.
,
Li
,
F.
, and
Deng
,
L.
,
2014
, “
Fault Diagnosis for a Wind Turbine Transmission System Based on Manifold Learning and Shannon Wavelet Support Vector Machine
,”
Renewable Energy
,
62
(
2
), pp.
1
9
. 10.1016/j.renene.2013.06.025
37.
Manjurul Islam
,
M. M.
, and
Kim
,
J.-M.
,
2019
, “
Reliable Multiple Combined Fault Diagnosis of Bearings Using Heterogeneous Feature Models and Multiclass Support Vector Machines
,”
Reliab. Eng. Syst. Safe.
,
184
(
4
), pp.
55
66
. 10.1016/j.ress.2018.02.012
You do not currently have access to this content.