Abstract

This work presents a Deep Reinforcement Learning (DRL) approach to Procedural Content Generation (PCG) in order to automatically generate 3D virtual environments that users can interact with. The primary objective of PCG methods is to algorithmically generate new content in order to improve user experience. Researchers have started exploring the use of Machine Learning (ML) methods to generate content. However, these approaches frequently implement supervised ML algorithms that require initial datasets to train their generative models. In contrast, RL algorithms do not require training data to be collected a priori since they take advantage of simulation to train their models. Considering the advantages of RL algorithms, this work presents a method that generates new 3D virtual environments by training an RL agent using a 3D simulation platform. This work extends the authors' previous work and presents the results of a case study that supports the capability of the proposed method to generate new 3D virtual environments. The ability to automatically generate new content has the potential to maintain users' engagement in a wide variety of applications such as virtual reality applications for education and training, and engineering conceptual design.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.