In this paper, a traction superimposition method for simulating the deformation of multicomponent elastic models with different interfacial mesh densities is introduced. By applying linear interpolation method, the displacement data can be transferred between nonconforming interfaces. With the application of energy conservation principle, a relationship between the forces on different surfaces is constructed. By considering the displacement compatibility conditions together with force equilibrium conditions over the common interfaces, a relation between different components of a system is established. However, this interpolation method is only applicable to object components with the same or similar mesh densities. For models with different mesh densities between neighboring components, abnormities arise in the deformation. The causes of these abnormities are parsed by experiments and theoretical analysis. To eliminate the abnormal deformation, a traction superimposition method is proposed to enforce the force constraints on the interfaces. Experimental results are provided to verify this approach.

1.
Farhat
,
C.
,
Lesoinne
,
M.
, and
LeTallec
,
P.
, 1998, “
Load and Motion Transfer Algorithms for Fluid/Structure Interaction Problems With Nonmatching Discrete Interfaces
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
157
(
1–2
), pp.
95
114
.
2.
Smith
,
M. J.
,
Hodges
,
D. H.
, and
Cesnik
,
C. E. S.
, 2000, “
Evaluation of Computational Algorithms Suitable for Fluid-Structure Interactions
,”
J. Aircr.
0021-8669,
37
(
2
), pp.
282
194
.
3.
Cebral
,
J. J.
, 1996, “
Loose Coupling Algorithms for Fluid-Structure Interaction
,” Ph.D. thesis, Institute of Computational Sciences and Informatics, George Mason University, Fairfax, VA.
4.
Park
,
K. C.
,
Felippa
,
C. A.
, and
Rebel
,
G.
, 2002, “
A Simple Algorithm for Localized Construction of Non-Matching Structural Interfaces
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
(
9
), pp.
2117
2142
.
5.
Park
,
K. C.
,
Felippa
,
C. A.
, and
Rebel
,
G.
, 2001, “
Interfacing Nonmatching FEM Meshes: The Zero Moment Rule
,”
Trends in Computational Structural Mechanics
,
W. A.
Wall
,
K.-U.
Bletzinger
, and
K.
Schweizerhof
, eds.,
CIMNE
,
Barcelona, Spain
, pp.
1
16
.
6.
Park
,
K. C.
, and
Felippa
,
C. A.
, 2000, “
A Variational Principle for the Formulation of Partitioned Structural Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
(
1–3
), pp.
395
418
.
7.
Bernardi
,
C.
,
Maday
,
Y.
, and
Patera
,
A. T.
, 1994, “
A New Nonconforming Approach to Domain Decomposition: The Mortar Element Method
,”
Non-Linear Partial Differential Equations and Their Applications
,
H.
Brezis
, and
J. L.
Lions
, eds.,
Pitman/Wiley
,
London/New York
, Vol.
11
, pp.
13
51
8.
Belgacem
,
F. B.
,
Hild
,
P.
, and
Laborde
,
P.
, 1997, “
Approximation of the Unilateral Contact Problem by the Mortar Finite Element Method
,”
Computes Rendus de l’Academie des Sciences Series I Mathematics
,
324
(
1
), pp.
123
127
.
9.
Cai
,
X. C.
,
Dryia
,
M.
, and
Sarkis
,
M.
, 1999, “
Overlapping Nonmatching Grid Mortar Element Methods for Elliptic Problems
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
36
(
2
), pp.
581
606
.
10.
sBelgacem
,
F. B.
, and
Maday
,
Y.
, 1997, “
The Mortar Element Method for Three-Dimensional Finite Elements
,”
Modélisation mathématique et analyse numérique
,
31
(
2
), pp.
289
302
.
11.
Jiao
,
X. M.
, and
Heath
,
M. T.
, 2004, “
Common-Refinement-Based Data Transfer Between Non-Matching Meshes in Multiphysics Simulations
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
(
14
), pp.
2402
2427
.
12.
Kim
,
H. G.
, 2002, “
Interface Element Method (IEM) for a Partitioned System With Non-Matching Interfaces
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
(
29–30
), pp.
3165
3194
.
13.
Kim
,
H. G.
, 2003, “
Arbitrary Placement of Local Meshes in a Global Mesh by the Interface-Element Method (IEM)
,”
Int. J. Numer. Methods Eng.
0029-5981,
56
(
15
), pp.
2279
2312
.
14.
Cho
,
Y. S.
,
Jun
,
S.
,
Im
,
S.
, and
Kim
,
H. G.
, 2005, “
An Improved Interface Element With Variable Nodes for Non-Matching Finite Element Meshes
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
(
27–29
), pp.
3022
3046
.
15.
Goura
,
G. S. L.
, 2001, “
Time Marching Analysis of Flutter Using Computational Fluid Dynamics
,” Ph.D. thesis, University of Glasgow, Glasgow, UK.
16.
Goura
,
G. S. L.
,
Badcock
,
K. J.
,
Woodgate
,
M. A.
, and
Richards
,
B. E.
, 2001, “
A Data Exchange Method for Fluid-Structure Interaction Problems
,”
Aeronaut. J.
0001-9240,
105
(
1046
), pp.
215
221
.
17.
Goura
,
G. S. L.
,
Badcock
,
K. J.
,
Woodgate
,
M. A.
, and
Richards
,
B. E.
, 2001, “
Implicit Method for the Time Marching Analysis of Flutter
,”
Aeronaut. J.
0001-9240,
105
(
1046
), pp.
199
214
.
18.
Badcock
,
K. J.
,
Rampurawala
,
A. M.
, and
Richards
,
B. E.
, 2004, “
Intergrid Transformation for Aircraft Aeroelastic Simulations
,”
AIAA J.
0001-1452,
42
(
9
), pp.
1936
1939
.
19.
Sadeghi
,
M.
,
Liu
,
F.
,
Lai
,
K. L.
, and
Tsai
,
H. M.
, 2004, “
Application of Three-Dimensional Interfaces for Data Transfer in Aeroelastic Computations
,” AIAA Paper No. 2004-5376.
20.
Demkowicz
,
L.
,
Devloo
,
P.
, and
Dden
,
J. T.
, 1985, “
On an h-Type Mesh-Refinement Strategy Based on Minimization of Interpolation Errors
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
53
(
1
), pp.
67
89
.
21.
Flemisch
,
B.
, and
Wohlmuth
,
B. I.
, 2004, “
A Domain Decomposition Method on Nested Domains and Nonmatching Grids
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
20
(
3
), pp.
374
387
.
22.
Zhou
,
A. F.
,
Hui
,
K. C.
, and
Lai
,
Y. H.
, 2007, “
Simulating Deformation of Objects With Multi-Materials Using Boundary Element Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
74
(
7
), pp.
1088
1108
.
23.
Zhou
,
A. F.
, and
Hui
,
K. C.
, 2008. “
An Algorithm for the Fast Simulation of Multicomponent Object Deformation
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
8
(
2
), p.
021005
.
24.
Meseure
,
P.
, and
Chaillou
,
C.
, 2000, “
A Deformable Body Model for Surgical Simulation
,”
The Journal of Visualization and Computer Animation
,
11
(
4
), pp.
197
208
.
25.
Cotin
,
S.
,
Delingette
,
H.
, and
Ayache
,
N.
, 2000, “
A Hybrid Elastic Model Allowing Real-Time Cutting, Deformations and Force-Feedback for Surgery Training and Simulation
,”
Visual Comput.
0178-2789,
16
(
8
), pp.
437
453
.
26.
Cotin
,
S.
,
Delingette
,
H.
, and
Ayache
,
N.
, 1999, “
Real-Time Elastic Deformations of Soft Tissues for Surgery Simulation
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
5
(
1
), pp.
62
72
.
You do not currently have access to this content.