The tolerancing process links the virtual and the real worlds. From the former, tolerances define a variational geometrical language (geometric parameters). From the latter, there are values limiting those parameters. The beginning of a tolerancing process is in this duality. As high precision assemblies cannot be analyzed with the assumption that form errors are negligible, we propose to apply this process to assemblies with form errors through a new way of allowing to parameterize forms and solve their assemblies. The assembly process is calculated through a method of allowing to solve the 3D assemblies of pairs of surfaces having form errors using a static equilibrium. We have built a geometrical model based on the modal shapes of the ideal surface. We compute for the completely deterministic contact points between this pair of shapes according to a given assembly process. The solution gives an accurate evaluation of the assembly performance. Then we compare the results with or without taking into account the form errors. When we analyze a batch of assemblies, the problem is to compute for the nonconformity rate of a pilot production according to the functional requirements. We input probable errors of surfaces (position, orientation, and form) in our calculus and we evaluate the quality of the results compared with the functional requirements. The pilot production then can or cannot be validated.

1.
Chase
,
K. W.
, and
Parkinson
,
A. R.
, 1991, “
A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies
,”
Res. Eng. Des.
0934-9839,
3
, pp.
23
37
.
2.
Graves
,
S.
, 2001, “
Tolerance Analysis Taylored to Your Organization
,”
J. Quality Technol.
0022-4065,
33
(
3
), pp.
293
303
.
3.
Requicha
,
A. A. G.
, 1983, “
Toward a Theory of Geometric Tolerancing
,”
Int. J. Robot. Res.
0278-3649,
2
, pp.
45
60
.
4.
Srinivasan
,
V.
, 1993, “
Role of Sweeps in Tolerancing Semantics
,”
Forum on Dimensional Tolerancing and Metrology
, Vol.
27
, pp.
69
78
.
5.
Wirtz
,
A.
, 1989, “
Vectorial Tolerancing
,”
Proceedings of the International Conference on CAD/CAT and AMT
.
6.
Gaunet
,
D.
, 1993, “
Vectorial Tolerancing Model
,”
Proceedings of the Third CIRP Seminar on Computer-Aided Tolerancing
, Ecole Normale Superieure de Cachan, Cachan, France,
Eyrolles
,
Paris
, pp.
25
49
.
7.
Clement
,
A.
,
Riviere
,
A.
,
Serre
,
P.
, and
Valade
,
C.
, 1997, “
The TTRS: 13 Constraints for Dimensioning and Tolerancing
,”
Fifth CIRP International Seminar on Computer-Aided Tolerancing
, Toronto, Canada.
8.
Sacks
,
E.
, and
Joskowicz
,
J.
, 1998, “
Parametric Kinematic Tolerance Analysis of General Planar Systems
,”
Comput.-Aided Des.
0010-4485,
30
(
9
), pp.
707
714
.
9.
Laperrière
,
L.
, and
Desrochers
,
A.
, 2001, “
Modeling Assembly Quality Requirements Using Jacobian or Screw Transforms: A Comparison
,”
Proceedings of the Fourth IEEE International Symposium on Assembly and Task Planning
, pp.
330
336
.
10.
Davidson
,
J. K.
,
Mujezinović
,
A.
, and
Shah
,
J. J.
, 2002, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
0161-8458,
124
, pp.
609
622
.
11.
Bourdet
,
P.
, and
Clement
,
A.
, 1988, “
A Study of Optimal-Criteria Identification Based on the Small-Displacement Screw Model
,”
CIRP Ann.
0007-8506,
37
, pp.
503
506
.
12.
Giordano
,
M.
, and
Duret
,
D.
, 1993, “
Clearance Space and Deviation Space
,”
Third CIRP Seminar on Computer Aided Tolerancing
,”
ENS
,
Cachan, France
.
13.
Giordano
,
M.
,
Kataya
,
B.
, and
Pairel
,
E.
, 2001, “
Tolerance Analysis and Synthesis by Means of Clearance and Deviation Spaces
,”
Proceedings of the Seventh CIRP International Seminar on Computer-Aided Tolerancing
, pp.
345
354
.
14.
International Organization for Standardization
, 1983, “
Geometric Tolerancing—Tolerancing of Form, Orientation, Location, and Run-Out—Generalities, Definitions, Symbols, and Indications on Drawings
,” ISO 1101.
15.
Dantan
,
J. -Y.
,
Ballu
,
A.
, and
Mathieu
,
L.
, 2008, “
Geometrical Product Specifications—Model for Product Life Cycle
,”
Comput.-Aided Des.
0010-4485,
40
(
4
), pp.
493
501
.
16.
Cho
,
N.
, and
Tu
,
J. F.
, 2002, “
Quantitative Circularity Tolerance Analysis and Design for 2D Precision Assemblies
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
1391
1401
.
17.
Capello
,
E.
, and
Semeraro
,
A.
, 2000, “
Harmonic Fitting Approach for Plane Geometry Measurements
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
16
, pp.
250
258
.
18.
Capello
,
E.
, and
Semeraro
,
A.
, 2001, “
The Harmonic Fitting Method for the Assessment of the Substitute Geometry Estimate Error. Part I: 2D and 3D Theory
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
, pp.
1071
1102
.
19.
Huang
,
W.
, and
Ceglarek
,
D.
, 2002, “
Mode-Based Decomposition of Part Form Error by Discrete-Cosine-Transform With Implementation to Assembly and Stamping System With Compliant Parts
,”
CIRP Ann.
0007-8506,
51
, pp.
21
26
.
20.
Wyant
,
J. C.
, and
Creath
,
K.
, 1992, “
Basic Wavefront Aberration Theory for Optical Metrology
,”
Applied Optics and Optical Engineering
, Vol.
11
,
Academic Press
,
New York
, pp.
2
53
.
21.
Henke
,
R. P.
,
Summerhays
,
K. D.
,
Baldwinc
,
J. M.
,
Cassou
,
R. M.
, and
Brownd
,
C. W.
, 1999, “
Methods for Evaluation of Systematic Geometric Deviations in Machined Parts and Their Relationships to Process Variables
,”
Precis. Eng.
0141-6359,
23
, pp.
273
292
.
22.
Zahouani
,
H.
,
Vargiolu
,
R.
, and
Loubet
,
J. -L.
, 1998, “
Fractal Models of Surface Topography and Contact Mechanics
,”
Math. Comput. Modell.
0895-7177,
28
(
4–8
), pp.
517
534
.
23.
Lee
,
S. -H.
,
Zahouani
,
H.
,
Caterini
,
R.
, and
Mathia
,
T. G.
, 1998, “
Morphological Characterisation of Engineered Surfaces by Wavelet Transform
,”
Int. J. Mach. Tools. Manuf.
,
38
(
5–6
), pp.
581
589
.
24.
Gouskov
,
A.
, and
Tichkiewitch
,
S.
, 1999, “
Influence of the Machine-Tool Defects on the Formation of the Residual Defects on a Surface: Application to Turning
,”
Integrated Design and Manufacturing in Mechanical Engineering ‘98
,
Kluwer
,
Dordrecht
, pp.
341
348
.
25.
Samper
,
S.
, and
Formosa
,
F.
, 2007, “
Form Defects Tolerancing by Natural Modes Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
, pp.
44
51
.
26.
Cubeles-Valade
,
C.
, and
Rivière
,
A.
, 1998, “
Nominal and Actual Geometry Explicit Declaration. Application to Dimensional Inspection
,”
Integrated Design and Manufacturing in Mechanical Engineering ‘98
,
Kluwer Academic
,
Compiegne
, pp.
357
364
.
27.
Pottmann
,
H.
, and
Leopoldseder
,
S.
, 2003, “
A Concept for Parametric Surface Fitting Which Avoids the Parameterization Problem
,”
Comput.-Aided Des.
0010-4485,
20
, pp.
343
362
.
28.
Summerhays
,
K. D.
,
Henke
,
R. P.
,
Bladwin
,
J. M.
,
Cassou
,
R. M.
, and
Brown
,
C. W.
, 2002, “
Optimizing Discrete Point Sample Patterns and Measurement Data Analysis on Internal Cylindrical Surfaces With Systematic Form Deviations
,”
J. Soc. Precis. Eng.
0912-0289,
26
(
1
), pp.
105
121
.
29.
Camelio
,
J. A.
,
Hu
,
S. J.
, and
Marin
,
S. P.
2004, “
Compliant Assembly Variation Analysis Using Component Geometric Covariance
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
2
), pp.
355
360
.
30.
Nastar
,
C.
, and
Ayache
,
N.
, 1996, “
Frequency-Based Nonrigid Motion Analysis: Application to Four Dimensional Medical Images
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
18
(
11
), pp.
1067
1079
.
31.
Cootes
,
T.
, 2005, “
Timeline of Developments in Algorithms for Finding Correspondences Across Sets of Shapes and Images
,” http://en.scientificcommons.org/43527435http://en.scientificcommons.org/43527435.
32.
Ameta
,
G.
,
Davidson
,
J.
, and
Shah
,
J.
, 2008, “
Influence of Form on Tolerance-Map-Generated Frequency Distributions for 1D Clearance in Design
,”
Precis. Eng.
0141-6359, in press.
33.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J.
, 2007, “
Using Tolerance-Maps to Generate Frequency Distributions of Clearance and Allocate Tolerances for Pin-Hole Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
, pp.
347
359
.
34.
Pierce
,
R. S.
, 2008, “
A Method for Integrating Form Errors Into Tolerance Analysis
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
011002
.
35.
Anselmetti
,
B.
,
Mejbri
,
H.
, and
Mawussi
,
K.
, 2003, “
Coupling Experimental Design—Digital Simulation of Junctions for the Development of Complex Tolerance Chains
,”
Comput Ind.
0166-3615,
50
, pp.
277
292
.
36.
Huang
,
W.
,
Zhenyu
,
K.
, 2008, “
Simulation and Integration of Geometric and Rigid Body Kinematics Errors for Assembly Variation Analysis
,”
J. Manuf. Syst.
0278-6125,
27
, pp.
36
44
.
37.
Adragna
,
P. A.
,
Samper
,
S.
,
Pillet
,
M.
, and
Favreliere
,
H.
, 2006, “
Analysis of Shape Deviations of Measured Geometries With a Modal Basis
,”
J. Machine Eng.
,
6
(
1
), pp.
134
143
.
38.
Leissa
,
A. W.
, 1993,
Vibrations of Plates
,
Acoustical Society of America
,
Melville, New York
.
39.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2005,
The Finite Element Method for Solid and Structural Mechanics
,
6th ed.
,
Elsevier
,
New York
.
40.
Cvetko
,
R.
,
Chase
,
K. W.
, and
Magleby
,
S. P.
, 1998, “
New Metrics for Evaluating Monte Carlo Tolerance Analysis of Assemblies
,”
Proceedings of the ASME International Mechanical Engineering Conference and Exposition
.
You do not currently have access to this content.