Design-processes for multiscale, multifunctional systems are inherently complex due to the interactions between scales, functional requirements, and the resulting design decisions. While complex design-processes that consider all interactions lead to better designs, simpler design-processes where some interactions are ignored are faster and resource efficient. In order to determine the right level of simplification of design-processes, designers are faced with the following questions: (a) How should complex design-processes be simplified without affecting the resulting product performance? (b) How can designers quantify and evaluate the appropriateness of different design-process alternatives? In this paper, the first question is addressed by introducing a method for determining the appropriate level of simplification of design-processes—specifically through decoupling of scales and decisions in a multiscale problem. The method is based on three constructs: interaction patterns to model design-processes, intervals to model uncertainty resulting from decoupling of scales and decisions, and value-of-information based metrics to measure the impact of simplification on the final design outcome. The second question is addressed by introducing a value-of-information based metric called the improvement potential for quantifying the appropriateness of design-process alternatives from the standpoint of product design requirements. The metric embodies quantitatively the potential for improvement in the achievement of product requirements by adding more information for design decision-making. The method is illustrated via a datacenter cooling system design example.

1.
Bar-Yam
,
Y.
, 1997,
Dynamics of Complex Systems
,
Westview
,
Boulder, CO
.
2.
Calvano
,
C. N.
, and
John
,
P.
, 2004, “
Systems Engineering in an Age of Complexity
,”
J. Syst. Eng.
0022-4820,
7
(
1
), pp.
25
34
.
3.
2004, “
Simulation Based Engineering Science
,” National Science Foundation, Workshop Report No. sbes0506.
4.
Dolbow
,
J.
,
Khaleel
,
M. A.
, and
Mitchell
,
J.
, 2004, “
Multiscale Mathematics Initiative: A Roadmap
,” U.S. Department of Energy, Report No. PNNL-14966.
5.
Summers
,
J. D.
, and
Shah
,
J. J.
, 1993, “
Developing Measures of Complexity in Engineering Design
,”
Design Theory and Methodology Conference
, Chicago, IL, Paper No. DETC2003/DTM-48633.
6.
Kusiak
,
A.
, and
Wang
,
J.
, 1993, “
Decomposition of the Design Process
,”
ASME J. Mech. Des.
0161-8458,
115
, pp.
687
694
.
7.
Kusiak
,
A.
,
Wang
,
J.
,
He
,
D.
, and
Feng
,
C.
, 1995, “
A Structured Approach for Analysis of Design Processes
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
18
(
3
), pp.
664
673
.
8.
Grose
,
D. L.
, 1994, “
Reengineering the Aircraft Design Process
Proceedings of the Fifth AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Panama City Beach, FL, Paper No. AIAA-94-4406.
9.
Rogers
,
J. L.
, and
Christine
,
B.
, 1994, “
Ordering Design Tasks Based on Coupling Strengths
,”
Fifth AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Panama City, FL, Paper No. AIAA-94-4326.
10.
Mistree
,
F.
,
Bras
,
B. A.
,
Smith
,
W. F.
, and
Allen
,
J. K.
, 1996, “
Modeling Design Processes: A Conceptual, Decision-Based Perspective
,”
J. Eng. Des. Autom.
,
1
(
4
), pp.
209
221
.
11.
Fernández
,
M. G.
,
Rosen
,
D. W.
,
Allen
,
J.
, and
Mistree
,
F.
, 2002, “
On a Decision Support Framework for Distributed Collaborative Design and Manufacture
,”
Ninth AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Atlanta, GA, Paper No. AIAA2002-5496.
12.
Bras
,
B. A.
, and
Mistree
,
F.
, 1991, “
Designing Design Process in Decision-Based Concurrent Engineering
,”
J. Mater. Manuf.
,
100
, pp.
451
458
.
13.
Fernández
,
M. G.
,
Rosen
,
D. W.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 2002, “
Digital Interfaces: The Key to Effective Decision-Making in Distributed Collaborative Design and Manufacture
,” ASME Paper No. ASME DETC2002/CIE-34466.
14.
Simon
,
H. A.
, 1996,
The Sciences of the Artificial
,
MIT
,
Cambridge, MA
.
15.
Pimmler
,
T. U.
, and
Eppinger
,
S. D.
, 1994, “
Integration Analysis of Product Decompositions
,”
ASME Design Theory and Methodology
,
Minneapolis, MN
, pp.
343
351
.
16.
Kusiak
,
A.
, and
Park
,
K.
, 1990, “
Concurrent Engineering: Decomposition and Scheduling of Design Activities
,”
Int. J. Prod. Res.
0020-7543,
28
(
10
), pp.
1883
1900
.
17.
Chen
,
L.
, and
Li
,
S.
, 2005, “
Analysis of Decomposability and Complexity for Design Problems in the Context of Decomposition
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
545
557
.
18.
Li
,
S.
, and
Chen
,
L.
, 2006, “
Model-based Decomposition Using Non-Binary Dependency Analysis and Heuristic Partitioning Analysis
,” ASME Paper No. DETC2006-99175.
19.
Sobieszczanski-Sobieski
,
J.
, 1990, “
On the Sensitivity of Complex, Internally Coupled Systems
,”
AIAA J.
0001-1452,
28
(
1
), pp.
153
160
.
20.
Hulme
,
K. F.
, and
Bloebaum
,
C. L.
, 1996, “
Development of CASCADE: A Multidisciplinary Design Test Simulator
,”
Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Bellevue, WA, pp.
438
447
.
21.
Bloebaum
,
C. L.
, 1995, “
Coupling Strength-Based System Reduction for Complex Engineering Design
,”
Struct. Optim.
0934-4373,
10
(
2
), pp.
113
121
.
22.
Bloebaum
,
C. L.
,
Hajela
,
P.
, and
Sobieszczanski-Sobieski
,
J.
, 1992, “
Non-Hierarchic System Decomposition in Structural Optimization
,”
Eng. Optimiz.
0305-215X,
19
, pp.
171
186
.
23.
English
,
K.
,
Miller
,
E.
, and
Bloebaum
,
C. L.
, 1996, “
Total Derivative Based Coupling Suspension for System Reduction in Complex Design
,”
Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Bellevue, WA, Paper No. AIAA-1996-4016.
24.
Hajela
,
P.
,
Bloebaum
,
C. L.
, and
Sobieszczanski-Sobieski
,
J.
, 1990, “
Application of Global Sensitivity Equations in Multidisciplinary Aircraft Synthesis
,”
J. Aircr.
0021-8669,
27
(
12
), pp.
1002
1010
.
25.
English
,
K.
,
Bloebaum
,
C. L.
, and
Miller
,
E.
, 2001, “
Development of Multiple Cycle Coupling Suspension in the Optimization of Complex Systems
,”
Struct. Multidiscip. Optim.
1615-147X,
22
(
4
), pp.
268
283
.
26.
Panchal
,
J. H.
,
Paredis
,
C. J. J.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 2008, “
A Value-of-Information Based Approach to Simulation Model Refinement
,”
Eng. Optimiz.
0305-215X,
40
(
3
), pp.
223
251
.
27.
Eppinger
,
S. D.
, and
Salminen
,
V.
, 2001, “
Patterns of Product Development Interactions
,”
International Conference on Engineering Design (ICED 01)
, Glasgow, pp.
283
290
.
28.
Panchal
,
J. H.
, 2005, “
A Framework for Simulation-Based Integrated Design of Multiscale Products and Design Processes
,” Ph.D. thesis, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
29.
Panchal
,
J. H.
,
Choi
,
H. -J.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
, 2007, “
A Systems Based Approach for Integrated Design of Materials, Products, and Design Process Chains
,”
J. Comput.-Aided Mater. Des.
0928-1045,
14
, Supplement 1, pp.
265
293
.
30.
Arrow
,
K.
, and
Hurwicz
,
L.
, 1972, “
An Optimality Criterion for Decision-Making Under Ignorance
,”
Uncertainty and Expectation in Economics: Essays in Honour of G. L. S. Shackle
,
C. F.
Carter
and
J. L.
Ford
, eds.,
Blackwell
,
Oxford
, pp.
1
11
.
31.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B. A.
, 1993, “
The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm
,”
Structural Optimization: Status and Promise
,
M. P.
Kamat
, ed.,
AIAA
,
Washington, DC
, pp.
247
286
.
32.
Struble
,
C. L.
,
Bascaran
,
E.
,
Bannerot
,
R. B.
, and
Mistree
,
F.
, 1989, “
Compromise: A Multiobjective Hierarchical Approach to the Design of Spacecraft Thermal Control Systems
,”
ASME Computers in Engineering Conference
, Anaheim, CA, pp.
423
428
.
33.
Seepersad
,
C. C.
, 2001, “
The Utility-Based Compromise Decision Support Problem With Applications in Product Platform Design
,” MS thesis, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
34.
Seepersad
,
C. C.
,
Mistree
,
F.
, and
Allen
,
J. K.
, 2005, “
Designing Evolving Families of Products Using the Utility-Based Compromise Decision Support Problem
,”
International Journal of Mass Customisation
,
1
(
1
), pp.
37
64
.
35.
Rolander
,
N.
, 2005, “
Robust Design of Air Cooled Server Cabinets for Thermal Efficiency
,” MS thesis, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
36.
Rolander
,
N.
,
Rambo
,
J.
,
Joshi
,
Y.
, and
Mistree
,
F.
, 2005, “
Robust Design of Air Cooled Server Cabinets for Thermal Efficiency
,”
ASME InterPACK Conference
, San Francisco, CA, Paper No. IPACK2005-73171.
37.
Rolander
,
N.
,
Rambo
,
J.
,
Joshi
,
Y.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 2006, “
Robust Design of Turbulent Convective Systems Using the Proper Orthogonal Decomposition
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
844
855
.
38.
Balling
,
R. J.
, and
Sobieski
,
J. S.
, 1996, “
Optimization of Coupled Systems: A Critical Review of Approaches
,”
AIAA J.
0001-1452,
34
(
1
), pp.
6
17
.
39.
Lewis
,
K.
, and
Mistree
,
F.
, 1998, “
Collaborative, Sequential and Isolated Decisions in Design
,”
ASME J. Mech. Des.
0161-8458,
120
(
4
), pp.
643
652
.
40.
Panchal
,
J. H.
,
Fernández
,
M. G.
,
Paredis
,
C. J. J.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 2004, “
Designing Design Processes in Product Lifecycle Management: Research Issues and Strategies
,” ASME Paper No. DETC2004/CIE-57742.
This content is only available via PDF.
You do not currently have access to this content.