A virtual reality haptic system for capturing skillful human movements in control of a hemisphere rolling on a plane without slipping is presented in this paper. A dynamic model of this nonholonomic rolling system with configuration-dependent inertia and gravity is derived, and a solver, required for the real-time haptic interaction, is implemented. The performance of the haptic system is verified under experiments with human subjects. Experimental data recorded by the haptic system are analyzed and some common features of human movements in the precession phase of the manipulation of the rolling system are observed. Finally, a simple actuation scheme, capturing these features, is proposed and verified under simulation.

1.
Michaud
,
F.
,
de Lafontaine
,
J.
, and
Caron
,
S.
, 2001, “
A Spherical Robot for Planetary Surface Exploration
,”
Proceedings of the Sixth International Symposium on Artificial Intelligence, Robotics and Automation in Space
,
Canadian Space Agency
,
St-Hubert Quebec, Canada
.
2.
Michaud
,
F.
, and
Caron
,
S.
, 2002, “
Roball, the Rolling Robot
,”
Auton. Rob.
,
12
(
2
), pp.
211
222
. 0929-5593
3.
Bicchi
,
A.
,
Balluchi
,
A.
,
Prattichizzo
,
D.
, and
Gorelli
,
A.
, 1997, “
Introducing the ‘Sphericle’: An Experimental Testbed for Research and Teaching in Nonholonomy
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
2620
2625
.
4.
Bhattacharya
,
S.
, and
Agrawal
,
S.
, 2000, “
Spherical Rolling Robot: A Design and Motion Planning Studies
,”
IEEE Trans. Rob. Autom.
,
16
(
6
), pp.
835
839
. 1042-296X
5.
Javadi A.
,
A. H.
, and
Mojabi
,
P.
, 2004, “
Introducing Glory: A Novel Strategy for an Omnidirectional Spherical Rolling Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
126
(
3
), pp.
678
683
. 0022-0434
6.
Balasubramanian
,
R.
, 2006, “
Modeling and Control Techniques for a Class of Mobile Robot Error Recovery Problems
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
7.
Bobylev
,
D.
, 1892, “
On a Ball With a Gyroscope Inside Rolling Without Sliding on a Horizontal Plane
,”
Mat. Sb.
0368-8666,
16
(
3
), pp.
544
581
.
8.
Chaplygin
,
S.
, 1949, “
On a Ball Rolling on the Horizontal Plane
,”
Investigations on the Dynamics of Nonholonomic Systems
(
Classics of Natural Science
),
N.
Semenova
, ed.,
GITTL
,
Moscow
, pp.
72
99
, in Russian.
9.
Kilin
,
A.
, 2001, “
The Dynamics of Chaplygin Ball: The Qualitative and Computer Analysis
,”
Regular Chaotic Dyn.
,
6
(
3
), pp.
291
306
.
10.
Borisov
,
A.
, and
Mamaev
,
I.
, 2002, “
Rolling of a Rigid Body on Plane and Sphere: Hierarchy of Dynamics
,”
Regular Chaotic Dyn.
,
7
(
2
), pp.
177
200
.
11.
Li
,
Z.
, and
Canny
,
J.
, 1990, “
Motion of Two Rigid Bodies With Rolling Constraint
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
1
), pp.
62
72
.
12.
Jurdjevic
,
V.
, 1993, “
The Geometry of the Plate-Ball Problem
,”
Arch. Ration. Mech. Anal.
0003-9527,
124
(
4
), pp.
305
328
.
13.
Marigo
,
A.
, and
Bicchi
,
A.
, 2000, “
Rolling Bodies With Regular Surface: Controllability Theory and Applications
,”
IEEE Trans. Autom. Control
,
45
(
9
), pp.
1586
1599
. 0018-9286
14.
Mukherjee
,
R.
,
Minor
,
M.
, and
Pukrushpan
,
J.
, 2002, “
Motion Planning for a Spherical Mobile Robot: Revisiting the Classical Ball-Plate Problem
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
(
4
), pp.
502
511
.
15.
Svinin
,
M.
, and
Hosoe
,
S.
, 2008, “Motion Planning Algorithms for a Rolling Sphere With Limited Contact Area,” IEEE Transactions on Robotics, 24(3), pp. 612–625. 1546-1904
16.
Camicia
,
C.
,
Conticelli
,
F.
, and
Bicchi
,
A.
, 2000, “
Nonholonomic Kinematics and Dynamics of the Spherical
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’2000
, pp.
805
810
.
17.
Harada
,
K.
,
Kawashima
,
T.
, and
Kaneko
,
M.
, 2002, “
Rolling Based Manipulation Under Neighborhood Equilibrium
,”
Int. J. Robot. Res.
,
21
(
5–6
), pp.
463
474
. 0278-3649
18.
Suzuki
,
K.
,
Svinin
,
M.
, and
Hosoe
,
S.
, 2005, “Motion Planning for Rolling Based Locomotion,” Journal of Robotics and Mechatronics, 17(5), pp. 537–545.
19.
Hristu-Varsakelis
,
D.
, 2001, “
The Dynamics of a Forced Sphere-Plate Mechanical System
,”
IEEE Trans. Autom. Control
,
46
(
5
), pp.
678
686
. 0018-9286
20.
Choudhury
,
P.
, and
Lynch
,
K.
, 2002, “
Rolling Manipulation With a Single Control
,”
Int. J. Robot. Res.
,
21
(
5–6
), pp.
475
487
. 0278-3649
21.
Burdea
,
G.
, 2003,
Virtual Reality Technology
,
2nd ed.
,
Wiley
,
New York
.
22.
Montana
,
D.
, 1988, “
The Kinematics of Contact and Grasp
,”
Int. J. Robot. Res.
,
7
(
3
), pp.
17
32
. 0278-3649
23.
Murray
,
R.
,
Li
,
Z.
, and
Sastry
,
S.
, 1994,
A Mathematical Introduction to Robotic Manipulation
,
CRC
,
Boca Raton, FL
.
24.
Wittenburg
,
J.
, 1977,
Dynamics of Systems of Rigid Bodies
,
Teubner
,
Stuttgart, Germany
.
25.
Neimark
,
J.
, and
Fufaev
,
N.
, 1972, “
Dynamics of Nonholonomic Systems
,”
Translation of Mathematical Monographs
, Vol.
33
,
American Mathematical Society
,
Providence, RI
.
26.
Lurie
,
A.
, 2002, “
Analytical Mechanics
,”
Foundations of Engineering Mechanics
.
Springer-Verlag
,
Berlin
.
27.
Press
,
W.
,
Teukolsky
,
S.
,
Vetterling
,
W.
, and
Flannery
,
B.
, 1992,
Numerical Recipes in C: The Art of Scientific Computing
,
Cambridge University Press
,
New York
.
28.
Goncharenko
,
I.
,
Svinin
,
M.
,
Kanou
,
Y.
, and
Hosoe
,
S.
, 2006, “Predictability of Rest-to-Rest Movements in Haptic Environments With 3D Constraints,” Journal of Robotics and Mechatronics, 18(4), pp. 458–466.
29.
Horn
,
R.
, and
Johnson
,
C.
, 1986,
Matrix Analysis
,
Cambridge University Press
,
Cambridge
.
30.
Burdea
,
G.
, 1996,
Force and Touch Feedback for Virtual Reality
,
Wiley
,
New York
.
31.
SensAble Devices Inc.
, PHANToM Master User’s Manual, http://sensable.comhttp://sensable.com.
32.
Craig
,
J.
, 1989,
Introduction to Robotics: Mechanics and Control
,
2nd ed.
,
Addison-Wesley
,
Reading, MA
.
33.
Hogan
,
N.
, and
Colgate
,
J.
, 1989, “
Stability Problems in Contact Tasks
,”
Robotics Review
, Vol.
1
,
J.
Craig
,
O.
Khatib
, and
T.
Lozano-Perez
, eds.,
MIT
,
Cambridge, MA
, pp.
339
348
.
34.
Miller
,
B.
,
Colgate
,
J.
, and
Freeman
,
R.
, 2000, “
Guaranteed Stability of Haptic Systems With Nonlinear Virtual Environments
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
6
), pp.
712
719
.
35.
Gray
,
A.
, 1998,
Modern Differential Geometry of Curves and Surfaces With Mathematica
,
2nd ed.
,
CRC
,
Boca Raton, FL
.
36.
Marder
,
E.
, and
Calabrese
,
R.
, 1996, “
Principles of Rhythmic Motor Pattern Generation
,”
Physiol. Rev.
,
76
, pp.
688
717
. 0031-9333
37.
Matsuoka
,
K.
, 1987, “
Mechanisms of Frequency and Pattern Control in the Neural Rhythm Generators
,”
Biol. Cybern.
0340-1200,
56
, pp.
345
353
.
You do not currently have access to this content.