This paper presents a novel operational space calibration approach for robotic remote welding based on surface tracking with shared force control. A human-machine shared force controller is designed to combine manual control with local force control. A position-based force control strategy for surface tracking on the constrained motion plane is adopted. A precise method to measure the contact point’s spatial location during the surface tracking process is proposed. The operational space calibration for the L-pipe part is solved by direct least-squares fitting algorithm of elliptic tracking trajectory and L-pipe part calibration algorithm. The experimental results show that the proposed calibration method can make the operational space model error less than 1mm, which meets the requirements of carrying out assembling contact tasks during the remote welding process with passive compliance.

1.
Raimondi
,
T.
, 1976, “
Remote Handling in the Joint European Tonus (JET) Fusion Experiment
,”
Proceedings of the 24th Conference on Remote System Technology
, pp.
188
195
.
2.
Agapakis
,
J. E.
, and
Masubuchi
,
K.
, 1986, “
Fundamentals and Advances in the Development of Remote Welding Fabrication System
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
65
(
9
), pp.
21
32
.
3.
Launary
,
J. P.
, 1998, “
Teleoperation and Nuclear Services Advantages of Computerized Operator-Assistance Tools
,”
Nucl. Eng. Des.
0029-5493,
180
, pp.
47
52
.
4.
Tung
,
P. C.
,
Wu
,
M. C.
, and
Hwang
,
Y. R.
, 2004, “
An Image-Guided Mobile Robotic Welding System for SMAW Repair Processes
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
, pp.
1223
1233
.
5.
Li
,
H. C.
,
Wu
,
L.
,
Gao
,
H. M.
, and
Zhang
,
G. J.
, 2006, “
Review and Prognosis of State of Arts on Remote Welding Teleoperation
,”
Transactions of the China Welding Institution
,
27
(
6
), pp.
108
112
.
6.
Wu
,
L.
,
Li
,
H. C.
,
Gao
,
H. M.
, and
Zhang
,
G. J.
, 2007, “
Development of Telerobotic System for Remote Welding Operations in Unstructured Environment
,”
Solid State Phenom.
1012-0394,
127
, pp.
37
42
.
7.
Ferrell
,
W.
, and
Sheridan
,
T.
, 1967, “
Supervisory Control of Remote Manipulation
,”
IEEE Spectrum
0018-9235,
4
(
10
), pp.
81
88
.
8.
Kim
,
W. S.
, 1994, “
Virtual Reality Calibration for Telerobotic Servicing
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
4
, pp.
2769
2775
.
9.
Kim
,
W. S.
, 1996, “
Virtual Reality Calibration and Preview/Predictive Display for Telerobotics
,”
Presence: Teleoperators and Virtual Environments
,
5
(
2
), pp.
173
190
.
10.
Kim
,
W. S.
, 1999, “
Computer Vision Assisted Virtual Reality Calibration
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
3
), pp.
450
464
.
11.
Lee
,
Y. J.
,
Yun
,
J. N.
, and
Chung
,
M. J.
, 1997, “
Interactive Virtual Space Calibration for Teleoperation
,”
Proceedings of the Sixth IEEE International Workshop on Robot and Human Communication
, pp.
472
476
.
12.
Lin
,
Q. P.
, and
Kuo
,
C.
, 1997, “
Virtual Tele-Operation of Underwater Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
2
, pp.
1022
1027
.
13.
Hamel
,
W. R.
, and
Everett
,
S.
, 2000, “
Robot Task Space Analyzer Technical Overview
,” Design Report for Depart of Energy Contract DE-AR26–97FT34314R01, University of Tennessee.
14.
Hamel
,
W. R.
, and
Kress
,
R. L.
, 2001, “
Elements of Telerobotics Necessary for Waste Clean Up Automation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
393
400
.
15.
Song
,
Y. E.
,
Wu
,
L.
,
Tian
,
J. S.
, and
Dai
,
M.
, 2002, “
Operation Object Calibration Algorithm Used for Robotic Off-Line Programming
,”
Transactions of the China Welding Institution
,
23
(
3
), pp.
32
36
.
16.
Wei
,
X. Q.
,
Li
,
H. C.
,
Gao
,
H. M.
, and
Gao
,
S.
, 2006, “
Virtual Environment Calibration Based on Human-Machine Interaction for Remote Welding
,”
Transactions of the China Welding Institution
,
27
(
4
), pp.
37
40
.
17.
Wei
,
X. Q.
,
Gao
,
H. M.
,
Li
,
H. C.
, and
Wu
,
L.
, 2006, “
Experiments on Virtual Environment Calibration for Robotic Remote Welding
,”
Robot
,
28
(
6
), pp.
582
585
.
18.
Hayati
,
S.
, and
Venkataraman
,
S.
, 1989, “
Design and Implementation of a Robot Control System With Traded and Shared Control Capability
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
1310
1315
.
19.
Backes
,
P.
, 1992, “
Multi-Sensor Based Impedance Control for Task Execution
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
2
, pp.
1245
1250
.
20.
Kim
,
W. S.
,
Hannaford
,
B.
, and
Bejczy
,
A.
, 1992, “
Force-Reflection and Shared Compliant Control in Operating Telemanipulators With Time Delay
,”
IEEE Trans. Rob. Autom.
1042-296X,
8
(
2
), pp.
176
185
.
21.
Hirzinger
,
G.
,
Brunner
,
B.
,
Dietrich
,
J.
, and
Heidl
,
J.
, 1993, “
Sensor-Based Space Robotics—ROTEX and Its Telerobotic Features
,”
IEEE Trans. Rob. Autom.
1042-296X,
9
(
5
), pp.
649
663
.
22.
Everett
,
S.
, and
Dubey
,
R.
, 1998, “
Human-Machine Cooperative Telerobotics Using Uncertain Sensor or Model Data
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
2
, pp.
1615
1622
.
23.
Kuan
,
C.
, and
Young
,
K.
, 2001, “
VR-Based Teleoperation for Robot Compliance Control
,”
J. Intell. Robotic Syst.
0921-0296,
30
(
4
), pp.
377
398
.
24.
Griffin
,
W.
,
Provancher
,
W.
, and
Cutkosky
,
M.
, 2003, “
Feedback Strategies for Shared Control in Dexterous Telemanipulation
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
3
, pp.
2791
2796
.
25.
Park
,
J.
, and
Khatib
,
O.
, 2006, “
A Haptic Teleoperation Approach Based on Contact Force Control
,”
Int. J. Robot. Res.
0278-3649,
25
(
5–6
), pp.
575
591
.
26.
Fitzgibbon
,
A.
,
Pilu
,
M.
, and
Fisher
,
R.
, 2000, “
Direct Least Squares Fitting of Ellipses
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
21
(
5
), pp.
476
480
.
You do not currently have access to this content.