This paper describes the design of a haptic system that allows the interactive modification of cutter orientation during five-axis finishing cuts with the aim of improving the surface finish quality and collision avoidance strategies. The system supports two haptic models that provide three degree of freedom (DOF) force feedback and 6DOF posture sensing. Details of five key functions of the system are given: (1) a rendering conversion that uses 3DOF (instead of five) force feedback haptic representation, (2) an efficient force feedback design that allows accurate results to be obtained from the user’s manipulation, (3) a fast collision detection scheme that achieves real-time feedback, (4) use of active haptic guidance to assist cutter-path generation, and (5) a design that supports both ball-end and flat-end tools with partial optimization.

1.
Balasubramaniam
,
M.
,
Ho
,
S.
,
Sarma
,
S.
, and
Adachi
,
Y.
, 2002, “
Generation of Collision-Free 5-Axis Tool Paths Using a Haptic Surface
,”
Comput.-Aided Des.
0010-4485,
34
(
4
), pp.
267
279
.
2.
Zhu
,
W.
, and
Lee
,
Y. S.
, 2004, “
Five-Axis Pencil-Cut Planning and Virtual Prototyping With 5-DOF Haptic Interface
,”
Comput.-Aided Des.
0010-4485,
36
(
13
), pp.
1295
1307
.
3.
Liu
,
X.
,
Dodds
,
G.
,
McCartney
,
J.
, and
Hinds
,
B. K.
, 2004, “
Virtual Designworks–Designing 3D CAD Models Via Haptic Interaction
,”
Comput.-Aided Des.
0010-4485,
36
(
12
), pp.
1129
1140
.
4.
Chen
,
Y. H.
,
Wang
,
Y. Z.
, and
Yang
,
Z. Y.
, 2004, “
Towards a Haptic Virtual Coordinate Measuring Machine
,”
Int. J. Mach. Tools Manuf.
,
44
(
10
), pp.
1009
1017
. 0890-6955
5.
Yang
,
Z.
, and
Chen
,
Y.
, 2005, “
A Reverse Engineering Method Based on Haptic Volume Removing
,”
Comput.-Aided Des.
0010-4485,
37
(
1
), pp.
45
54
.
6.
Yang
,
Z.
,
Lian
,
L.
, and
Chen
,
Y.
, 2005, “
Haptic Function Evaluation of Multi-Material Part Design
,”
Comput.-Aided Des.
0010-4485,
37
(
7
), pp.
727
736
.
7.
Chen
,
Y.
,
Yang
,
Z.
, and
Lian
,
L.
, 2005, “
On the Development of a Haptic System for Rapid Product Development
,”
Comput.-Aided Des.
0010-4485,
37
(
5
), pp.
559
569
.
8.
Choi
,
B. K.
, and
Jerard
,
R. B.
, 1998,
Sculptured Surface Machining: Theory and Applications
,
Kluwer
,
Dordrecht
.
9.
Lee
,
Y. S.
, 1998, “
Non-Isoparametric Toolpath Planning by Machining Strip Evaluation for 5-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
0010-4485,
30
, pp.
559
570
.
10.
Chiou
,
C. J.
, and
Lee
,
Y. S.
, 1999, “
A Shape-Generating Approach for Multi-Axis Machining G-Buffer Models
,”
Comput.-Aided Des.
0010-4485,
31
(
12
), pp.
761
776
.
11.
Chiou
,
C. J.
, 2004, “
Accurate Tool Position for Five-Axis Ruled Surface Machining by Swept Envelope Approach
,”
Comput.-Aided Des.
0010-4485,
36
(
10
), pp.
967
974
.
12.
Chiou
,
C. J.
, and
Lee
,
Y. S.
, 2002, “
A Machining Potential Field Approach to Tool Path Generation for Multi-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
0010-4485,
34
(
5
), pp.
357
371
.
13.
Lee
,
Y. S.
, and
Chang
,
T. C.
, 1995, “
Two-Phase Approach to Global Tool Interference Avoidance in 5-Axis Machining
,”
Comput.-Aided Des.
0010-4485,
27
(
10
), pp.
715
729
.
14.
Lee
,
Y. S.
, 1997, “
Admissible Tool Orientation Control of Gouging Avoidance for 5-Axis Complex Surface Machining
,”
Comput.-Aided Des.
0010-4485,
29
(
7
), pp.
507
521
.
15.
Chiou
,
C. J.
, 2005, “
Floor, Wall and Ceiling Approach for Ball-End Tool Pocket Machining
,”
Comput.-Aided Des.
0010-4485,
37
(
4
), pp.
373
385
.
16.
Choi
,
B. K.
,
Park
,
J. W.
, and
Jun
,
C. S.
, 1993, “
Cutter-Location Data Optimization in 5-Axis Surface Machining
,”
Comput.-Aided Des.
0010-4485,
25
(
6
), pp.
377
386
.
17.
Jun
,
C. S.
,
Cha
,
K.
, and
Lee
,
Y. S.
, 2003, “
Optimizing Tool Orientations for 5-Axis Machining by Configuration-Space Search Method
,”
Comput.-Aided Des.
0010-4485,
35
(
6
), pp.
549
566
.
18.
Munlin
,
M.
,
Makhanov
,
S.
, and
Bohez
,
E.
, 2004, “
Optimization of Rotations of a Five-Axis Milling Machine Near Stationary Points
,”
Comput.-Aided Des.
0010-4485,
36
(
12
), pp.
1117
1128
.
19.
20.
Ho
,
S.
,
Sarma
,
S.
, and
Adachi
,
Y.
, 2001, “
Real-Time Interference Analysis Between a Tool and an Environment
,”
Comput.-Aided Des.
0010-4485,
33
(
13
), pp.
935
947
.
21.
Klosowski
,
J. T.
,
Held
,
M.
,
Mitchell
,
J.
,
Sowizral
,
H.
, and
Zikan
,
K.
, 1998, “
Efficient Collision Detection Using Bounding Volume Hierarchies of K-DOPs
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
4
(
1
), pp.
21
36
.
22.
Ding
,
S.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
, 2004, “
Oriented Bounding Box and Octree Based Global Interference Detection in 5-Axis Machining of Free-Form Surfaces
,”
Comput.-Aided Des.
0010-4485,
36
(
13
), pp.
1281
1294
.
23.
Gottschalk
,
S.
,
Lin
,
M. C.
, and
Manocha
,
D.
, 1996, “
OBBTree: A Hierarchical Structure for Rapid Interference Detection
,”
Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques
,
New Orleans, LA
, pp.
171
180
.
24.
McNeely
,
W. A.
,
Puterbaugh
,
K. D.
, and
Troy
,
J. J.
, 1999, “
Six Degree-of-Freedom Haptic Rendering Using Voxel Sampling
,”
Proceedings of the SIGGRAPH Annual Conference on Computer Graphics
,
Los Angeles, CA
, pp.
401
408
.
25.
Cignoni
,
P.
,
Montani
,
C.
,
Perego
,
R.
, and
Scopigno
,
R.
, 1993, “
Parallel 3D Delaunay Triangulation
,”
Comput. Graph. Forum
,
12
(
3
), pp.
129
142
. 0167-7055
You do not currently have access to this content.