Point cloud construction using digital fringe projection (PCCDFP) is a noncontact technique for acquiring dense point clouds to represent the 3D shapes of objects. Most existing PCCDFP systems use projection patterns consisting of straight fringes with fixed fringe pitches. In certain situations, such patterns do not give the best results. In our earlier work, we have shown that for surfaces with large range of normal directions, patterns that use curved fringes with spatial pitch variation can significantly improve the process of constructing point clouds. This paper describes algorithms for automatically generating adaptive projection patterns that use curved fringes with spatial pitch variation to provide improved results for an object being measured. We also describe the supporting algorithms that are needed for utilizing adaptive projection patterns. Both simulation and physical experiments show that adaptive patterns are able to achieve improved performance, in terms of measurement accuracy and coverage, as compared to fixed-pitch straight fringe patterns.

1.
Ji
,
Z.
, and
Leu
,
M. C.
, 1989, “
Design of Optical Triangulation Devices
,”
Opt. Laser Technol.
0030-3992,
21
(
5
), pp.
335
338
.
2.
Fraser
,
C. S.
, and
Brown
,
D. C.
, 1986, “
Industrial Photogrammetry—New Developments and Recent Applications
,”
Photogramm. Rec.
0031-868X,
12
(
68
), pp.
197
217
.
3.
Lane
,
S. N.
,
James
,
T. D.
, and
Crowell
,
M. D.
, 2000, “
Application of Digital Photogrammetry to Complex Topography for Geomorphological Research
,”
Photogramm. Rec.
0031-868X,
16
(
95
), pp.
793
821
.
4.
Galantucci
,
L. M.
,
Ferrandes
,
R.
, and
Percoco
,
G.
, 2006, “
Digital Photogrammetry for Facial Recognition
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
(
4
), pp.
390
396
.
5.
Breuckmann
,
B.
,
Halbauer
,
F.
,
Klaas
,
E.
, and
Kube
,
M.
, 1997, “
3D-metrologies for Industrial Applications
,”
Proceedings of SPIE 3102
, pp.
20
29
.
6.
Chen
,
F.
,
Brown
,
G. M.
, and
Song
,
M.
, 2000, “
Overview of Three-Dimensional Shape Measurement Using Optical Methods
,”
Opt. Eng. (Bellingham)
0091-3286,
39
(
1
), pp.
10
22
.
7.
Benko
,
P.
,
Martin
,
R. R.
, and
Varady
,
T.
, 2001, “
Algorithms for Reverse Engineering Boundary Representation Models
,”
Comput.-Aided Des.
0010-4485,
33
(
11
), pp.
839
851
.
8.
Sun
,
W.
,
Bradley
,
C.
,
Zhang
,
Y. F.
, and
Loh
,
H. T.
, 2001, “
Cloud Data Modelling Employing a Unified, Non-Redundant Triangular Mesh
,”
Comput.-Aided Des.
0010-4485,
33
(
2
), pp.
183
193
.
9.
Huang
,
J.
, and
Menq
,
C. H.
, 2002, “
Combinatorial Manifold Mesh Reconstruction and Optimization From Unorganized Points With Arbitrary Topology
,”
Comput.-Aided Des.
0010-4485,
34
(
2
), pp.
149
165
.
10.
Jamshidi
,
J.
,
Owen
,
G. W.
, and
Mileham
,
A. R.
, 2006, “
A New Data Fusion Method for Scanned Models
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
(
4
), pp.
340
348
.
11.
Barhak
,
J.
, and
Fischer
,
A.
, 2001, “
Parameterization and Reconstruction From 3D Scattered Points Based on Neural Network and PDE Techniques
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
7
(
1
), pp.
1
16
.
12.
Azernikov
,
S.
, and
Fischer
,
A.
, 2006, “
A New Volume Warping Method for Surface Reconstruction
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
(
4
), pp.
355
363
.
13.
Moroni
,
G.
, and
Rasella
,
M.
, 2007, “
Application of Regression Spline to Reverse Modeling
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
(
1
), pp.
95
101
.
14.
Urbanic
,
R. J.
,
ElMaraghy
,
W. H.
, and
ElMaraghy
,
H. A.
, 2006, “
An Integrated Systematic Design Recovery Framework
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
(
4
), pp.
318
330
.
15.
Schreve
,
K.
,
Goussard
,
C. L.
,
Basson
,
A. H.
, and
Dimitrov
,
D.
, 2006, “
Interactive Feature Modeling for Reverse Engineering
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
(
4
), pp.
422
424
.
16.
Mehdi-Souzani
,
C.
,
Thiebaut
,
F.
, and
Lartigue
,
C.
, 2006, “
Scan Planning Strategy for a General Digitized Surface
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
(
4
), pp.
331
339
.
17.
Singh
,
P.
,
Wu
,
Y.
,
Kaucic
,
R.
,
Chen
,
J.
, and
Little
,
F.
, 2007, “
Multimodal Industrial Inspection and Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
(
1
), pp.
102
107
.
18.
Toyooka
,
S.
, and
Iwaasa
,
Y.
, 1986, “
Automatic Profilometry of 3-D Diffuse Objects by Spatial Phase Detection
,”
Appl. Opt.
0003-6935,
25
(
10
), pp.
1630
1633
.
19.
Sitnik
,
R.
,
Kujawińska
,
M.
, and
Woźnicki
,
J.
, 2002, “
Digital Fringe Projection System for Large-Volume 360‐deg Shape Measurement
,”
Opt. Eng. (Bellingham)
0091-3286,
41
(
2
), pp.
443
449
.
20.
Legarda-Sáenz
,
R.
,
Bothe
,
T.
, and
Jüptner
,
W. P.
, 2004, “
Accurate Procedure for the Calibration of a Structured Light System
,”
Opt. Eng. (Bellingham)
0091-3286,
43
(
2
), pp.
464
471
.
21.
Peng
,
T.
, and
Gupta
,
S. K.
, 2007, “
Model and Algorithms for Point Cloud Construction Using Digital Projection Patterns
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
(
4
), pp.
372
381
.
22.
Wagemann
,
E. U.
,
Schönleber
,
M.
, and
Tiziani
,
H. J.
, 1998, “
Grazing Holographic Projection of Object-Adapted Fringes for Shape Measurements With Enhanced Sensitivity
,”
Opt. Lett.
0146-9592,
23
(
20
), pp.
1621
1623
.
23.
Zhao
,
H.
,
Chen
,
W.
, and
Tan
,
Y.
, 1994, “
Phase-Unwrapping Algorithm for the Measurement of Three-Dimensional Object Shapes
,”
Appl. Opt.
0003-6935,
33
(
20
), pp.
4497
4500
.
24.
Nadeborn
,
W.
,
Andrä
,
P.
, and
Osten
,
W.
, 1996, “
A Robust Procedure for Absolute Phase Measurement
,”
Opt. Lasers Eng.
0143-8166,
24
(
2–3
), pp.
245
260
.
25.
Coggravo
,
C. R.
, and
Huntley
,
J. M.
, 2000, “
Optimization of a Shape Measurement System Based on Spatial Light Modulators
,”
Opt. Eng. (Bellingham)
0091-3286,
39
(
1
), pp.
91
98
.
26.
Castleman
,
K. R.
, 1995,
Digital Image Processing
,
2nd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
27.
Brown
,
D. C.
, 1971, “
Close-Range Camera Calibration
,”
Photogramm. Eng.
0099-1112,
37
(
8
), pp.
855
866
.
You do not currently have access to this content.