Modeling the milling process requires cutter/workpiece engagement (CWE) geometry in order to predict cutting forces. The calculation of these engagements is challenging due to the complicated and changing intersection geometry that occurs between the cutter and the in-process workpiece. This geometry defines the instantaneous intersection boundary between the cutting tool and the in-process workpiece at each location along a tool path. This paper presents components of a robust and efficient geometric modeling methodology for finding CWEs generated during three-axis machining of surfaces using a range of different types of cutting tool geometries. A mapping technique has been developed that transforms a polyhedral model of the removal volume from the Euclidean space to a parametric space defined by the location along the tool path, the engagement angle, and the depth of cut. As a result, intersection operations are reduced to first order plane-plane intersections. This approach reduces the complexity of the cutter/workpiece intersections and also eliminates robustness problems found in standard polyhedral modeling and improves accuracy over the Z-buffer technique. The CWEs extracted from this method are used as input to a force prediction model that determines the cutting forces experienced during the milling operation. The reported method has been implemented and tested using a combination of commercial applications. This paper highlights ongoing collaborative research into developing a virtual machining system.

1.
Fussel
,
B. K.
,
Jerard
,
R. B.
, and
Hemmett
,
J. G.
, 2003, “
Modeling of Cutting Geometry and Forces for 5-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
333
346
.
2.
Choi
,
B. K.
, and
Jerard
,
R. B.
, 1998,
Sculptured Surface Machining: Theory and Applications
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
3.
Jerard
,
R. B.
,
Drysdale
,
R. L.
,
Hauck
,
K. E.
,
Schaudt
,
B.
, and
Magewick
,
J.
, 1989, “
Methods for Detecting Errors in Numerically Controlled Machining of Sculptured Surfaces
,”
IEEE Comput. Graphics Appl.
0272-1716,
9
(
1
), pp.
26
39
.
4.
Fussell
,
B. K.
,
Jerard
,
R. B.
, and
Hemmet
,
J. G.
, 2001, “
Robust Feedrate Selection for 3-Axis, NC Machining Using Discrete Models
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
214
224
.
5.
Drysdale
,
R. L.
,
Jerard
,
R. B.
,
Schaudt
,
B.
, and
Hauck
,
K.
, 1989, “
Discrete Simulation of, NC Machining
,”
Algorithmica
0178-4617,
4
, pp.
33
60
.
6.
Yun
,
W.-S.
,
Ko
,
J. H.
,
Lee
,
H. U.
,
Cho
,
D.-W.
, and
Ehmann
,
K. F.
, 2002, “
Development of a Virtual Machining System, Part 3: Cutting Process Simulation in Transient Cuts
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
(
15
), pp.
1617
1626
.
7.
Kim
,
M. G.
, and
Chu
,
N. G.
, 2004, “
Mean Cutting Force Prediction in Ball-end Milling Using Force Map Method
,”
J. Mater. Process. Technol.
0924-0136,
146
, pp.
303
310
.
8.
Gupta
,
S. K.
,
Saini
,
S. K.
,
Brent
,
W. S.
, and
Yao
,
Z.
, 2005, “
Geometric Algorithms for Computing Cutter Engagement Functions in 2.5D Milling Operations
,”
Comput.-Aided Des.
0010-4485,
37
, pp.
1469
1480
.
9.
Wang
,
W. P.
, 2005, “
Solid Modeling for Optimizing Metal Removal of Three Dimensional, NC End Milling
,”
J. Manuf. Syst.
0278-6125,
7
(
1
), pp.
57
65
.
10.
Spence
,
A. D.
, and
Altintas
,
Y.
, 1994, “
A Solid Modeler Based Milling Process Simulation and Planning System
,”
ASME J. Eng. Ind.
0022-0817,
116
(
1
), pp.
61
69
.
11.
Spence
,
A. D.
, and
Li
,
Z.
, 2001, “
Parallel Processing for 2-1/2, D Machining Simulation
,”
ACM Symposium on Solid Modeling and Applications
, pp.
140
148
.
12.
El-Mounayri
,
H.
,
Elbestawi
,
M. A.
,
Spence
,
A. D.
, and
Bedi
,
S.
, 1997, “
General Geometric Modeling Approach for Machining Process Simulation
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
13
, pp.
237
247
.
13.
Sadeghi
,
M. H.
,
Haghighat
,
H.
, and
Elbestawi
,
M. A.
, 2003, “
A Solid Modeler Based Ball-End Milling Process Simulation
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
22
, pp.
775
785
.
14.
Weinert
,
K.
, and
Surmann
,
T.
, 2003, “
Geometric Simulation of the Milling Process for Free Formed Surfaces
,”
Conference Proceedings: Simulation Aided Offline Process Design and Optimization in Manufacturing Sculptured Surfaces
,
Witten
Bommerholz
,
K.
Weinert
, ed., pp.
21
30
.
15.
Larue
,
A.
, and
Altintas
,
Y.
, 2005, “
Simulation of Flank Milling Processes
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
549
559
.
16.
Yip-Hoi
,
D.
, and
Huang
,
X.
, 2006, “
Cutter/Workpiece Engagement Feature Extraction From Solid Models for End Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
1
), pp.
249
260
.
17.
Yao
,
Z.
, 2005, “
Finding Cutter Engagement for Ball End Milling of Tesellated Free-Form Surfaces
,”
Proceedings of IDETC/CIE ASME International Design Engineering Technical Conferences
.
18.
Zeng-Jia
,
Hu.
, and
Zhi-Kui
,
L.
, 1996, “
Swept Volumes Generated by the Natural Quadric Surfaces
,”
Comput. Graph.
0097-8930,
20
(
2
), pp.
263
274
.
19.
Wang
,
J.
,
Peng
,
X.
, and
Yip-Hoi
,
D.
, 2006, “
A Multi-Agent System for Distributed, Internet Enabled Cutter/Workpiece Engagement Extraction
,”
Proceedings of the ASME Design Engineering Technical Conference
.
20.
Samet
,
H.
, 1984, “
The Quadtree and Related Hierarchical Data Structures
,”
ACM Comput. Surv.
0360-0300,
16
(
2
),
187
260
.
You do not currently have access to this content.