This paper presents an approach to automatically recover mesh surfaces with sharp edges for solids from their binary volumetric discretizations (i.e., voxel models). Our method consists of three steps. The topology singularity is first eliminated on the binary grids so that a topology correct mesh M0 can be easily constructed. After that, the shape of M0 is refined, and its connectivity is iteratively optimized into Mn. The shape refinement is governed by the duplex distance fields derived from the input binary volume model. However, the refined mesh surface lacks sharp edges. Therefore, we employ an error-controlled variational shape approximation algorithm to segment Mn into nearly planar patches and then recover sharp edges by applying a novel segmentation-enhanced bilateral filter to the surface. Using the technique presented in this paper, smooth regions and sharp edges can be automatically recovered from raw binary volume models without scalar field or Hermite data Compared to other related surface recovering methods on binary volume, our algorithm needs less heuristic coefficients.

1.
Wang
,
M. Y.
, and
Wang
,
X.
, 2004, “
A Level-Set Based Variational Method for Design and Optimization of Heterogeneous Objects
,”
Comput.-Aided Des.
0010-4485,
37
, pp.
321
337
.
2.
Habbal
,
A.
,
Petersson
,
J.
, and
Thellner
,
M.
, 2004, “
Multidisciplinary Topology Optimization Solved by a Nash Game
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
949
963
.
3.
Cappello
,
F.
, and
Mancuso
,
A.
, 2003, “
A Genetic Algorithm for Combined Topology and Shape Optimizations
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
761
769
.
4.
Lorensen
,
W.
, and
Cline
,
H.
, 1987, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
Comput. Graphics
0097-8493,
21
(
4
), pp.
163
169
.
5.
Duerst
,
M. J.
, 1988, “
Letters: Additional Reference to Marching Cubes
,”
Comput. Graphics
0097-8493,
22
(
2
), pp.
72
73
.
6.
Ning
,
P.
, and
Bloomenthal
,
J.
, 1993, “
An Evaluation of Implicit Surface Tillers
,”
IEEE Comput. Graphics Appl.
0272-1716,
13
(
6
), pp.
33
41
.
7.
Andujar
,
C.
,
Brunet
,
P.
,
Chica
,
A.
,
Navazo
,
I.
,
Rossignac
,
J.
, and
Vinacua
,
A.
, 2004, “
Optimizing the Topological and Combinatorial Complexity of Isosurfaces
,”
Comput.-Aided Des.
0010-4485,
37
(
8
), pp.
847
857
.
8.
Lachaud
,
J.-O.
, 1996, “
Topologically Defined Iso-Surfaces
,”
Proceedings of the Sixth Discrete Geometry for Computer Imagery (DGCI’96)
,
Lyon, France
,
Springer-Verlag
,
Berlin
, pp.
245
256
.
9.
Montani
,
C.
,
Scateni
,
R.
, and
Scopigno
,
R.
, 1994, “
A Modified Look-Up Table for Implicit Disambiguation of Marching Cubes
,”
Visual Comput.
0178-2789,
10
(
6
), pp.
353
355
.
10.
Bloomenthal
,
J.
, 1994, “
An Implicit Surface Polygonizer
,” in
Graphics Gems IV
,
P. S.
Heckbert
, ed.,
AP Professional
,
Boston
, pp.
324
349
.
11.
Zahlten
,
C.
, 1992, “
Piecewise Linear Approximation of Isovalued Surfaces
,” in
Advances in Scientific Visualization
,
F. H.
Post
and
A. J. S.
Hin
, eds.,
Springer-Verlag
,
New York
, pp.
105
118
.
12.
Nielson
,
G. M.
,
Foley
,
T. A.
,
Hamann
,
B.
, and
Lane
,
D.
, 1991, “
Visualizing and Modeling Scattered Multivariate Data
,”
IEEE Comput. Graphics Appl.
0272-1716,
11
(
3
), pp.
47
55
.
13.
Wallin
,
A.
, 1991, “
Constructing Isosurfaces From CT Data
,”
IEEE Comput. Graphics Appl.
0272-1716,
11
(
6
), pp.
28
33
.
14.
Nielson
,
G. M.
, and
Hamann
,
B.
, 1991, “
The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes
,”
Proceedings of IEEE Visualization
, Vol.
91
, pp.
83
91
.
15.
Wilhelms
,
J.
, and
Van Gelder
,
A.
, 1990, “
Topological Considerations in Isosurface Generation
,”
Comput. Graphics
0097-8493,
24
(
5
), pp.
79
86
.
16.
Wyvill
,
G.
,
McPheeters
,
C.
, and
Wyvill
,
B.
, 1986, “
Data Structures for Soft Objects
,”
Visual Comput.
0178-2789,
2
(
4
), pp.
227
234
.
17.
Lewiner
,
T.
,
Lopes
,
H.
,
Vieira
,
A. W.
, and
Tavares
,
G.
, 2003, “
Efficient Implementation of Marching Cubes’ Cases With Topological Guarantees
,”
Journal of Graphics Tools
,
8
(
2
), pp.
1
15
.
18.
Weber
,
G. H.
,
Scheuermann
,
G.
,
Hagen
,
H.
, and
Hamann
,
B.
, 2002, “
Exploring Scalar Fields Using Critical Isovalues
,”
Proceedings of IEEE Visualization
2002, pp.
171
178
.
19.
Stander
,
B. T.
, and
Hart
,
J. C.
, 1997, “
Guaranteeing the Topology of an Implicit Surface Polygonization for Interactive Modeling
,”
Proceedings of SIGGRAPH 97
, pp.
279
286
.
20.
Nielson
,
G.
, 2003, “
On Marching Cubes
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
9
(
3
), pp.
283
297
.
21.
Cignoni
,
P.
,
Ganovelli
,
F.
,
Montani
,
C.
, and
Scopigno
,
R.
, 2000, “
Reconstruction of Topologically Correct and Adaptive Trilinear Isosurfaces
,”
Comput. Graphics
0097-8493,
24
(
3
), pp.
399
418
.
22.
Ju
,
T.
,
Schaefer
,
S.
, and
Warren
,
J.
, 2003, “
Convex Contouring of Volumetric Data
,”
Visual Comput.
0178-2789,
19
, pp.
513
525
.
23.
Schroeder
,
W.
,
Zarge
,
J.
, and
Lorensen
,
W.
, 1992, “
Decimation of Triangle Meshes
,”
Comput. Graphics
0097-8493,
26
(
2
), pp.
65
70
.
24.
Hoppe
,
H.
,
DeRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
, and
Stuetzle
,
W.
, 1993, “
Mesh Optimization
,”
Proceedings of SIGGRAPH 1993
, pp.
19
26
.
25.
Kalvin
,
A.
, and
Taylor
,
R.
, 1996, “
Superfaces: Polygonal Mesh Simplification With Bounded Error
,”
IEEE Comput. Graphics Appl.
0272-1716,
16
(
3
), pp.
64
77
.
26.
Turk
,
G.
, 1992, “
Re-Tiling Polygonal Surfaces
,”
Comput. Graphics
0097-8493,
26
(
2
), pp.
55
64
.
27.
Crossno
,
P.
, and
Angel
,
E.
, 1997, “
Isosurface Extraction Using Particle Systems
,”
Proceedings of IEEE Visualization 97
, pp.
495
498
.
28.
Gibson
,
S.
, 1998, “
Using Distance Maps for Smooth Surface Representation in Sampled Volumes
,”
Proceedings of 1998 IEEE Volume Visualization Symposium
, pp.
23
30
.
29.
Perry
,
R. N.
, and
Frisken
,
S. F.
, 2001, “
Kizamu: A System for Sculpting Digital Characters
,”
Proceedings of ACM SIGGRAPH 2001
, pp.
47
56
.
30.
Azernikov
,
S.
, and
Fischer
,
A.
, 2006, “
A New Volume Warping Method for Surface Reconstruction
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
(
4
), pp.
355
363
.
31.
Kobbelt
,
L. P.
,
Botsch
,
M.
,
Schwanecke
,
U.
, and
Seidel
,
H.-P.
, 2001, “
Feature Sensitive Surface Extraction From Volume Data
,”
Proceedings of SIGGRAPH 2001
, pp.
57
66
.
32.
Ju
,
T.
,
Losasso
,
F.
,
Schaefer
,
S.
, and
Warren
,
J.
, 2002, “
Dual Contouring of Hermite Data
,”
ACM Trans. Graphics
0730-0301,
21
(
3
), pp.
339
346
.
33.
Ohtake
,
Y.
, and
Belyaev
,
A.
, 2003, “
Dual-Prime Mesh Optimization for Polygo-nized Implicit Surfaces With Sharp Features
,”
Proceedings of ACM Solid Modeling Symposium 2003
, pp.
171
178
.
34.
Ohtake
,
Y.
,
Belyaev
,
A.
, and
Pasko
,
A.
, 2003, “
Dynamic Mesh Optimization for Polygonized Implicit Surfaces With Sharp Features
,”
Visual Comput.
0178-2789,
19
, pp.
115
126
.
35.
Attene
,
M.
,
Falcidino
,
B.
,
Spagnuolo
,
M.
, and
Rossignac
,
J.
, 2005, “
Sharpen&Bend: Recovering Curved Edges in Triangle Meshes Produced by Feature-Insensitive Sampling
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
11
(
2
), pp.
181
192
.
36.
van Overveld
,
K.
, and
Wyvill
,
B.
, 2004, “
Shrinkwrap: An Efficient Adaptive Algorithm for Triangulating an Iso-Surface
,”
Visual Comput.
0178-2789,
20
(
6
), pp.
362
379
.
37.
Markosian
,
L.
,
Cohen
,
J. M.
,
Crulli
,
T.
, and
Hughes
,
J.
, 1999, “
Skin: A Constructive Approach to Modeling Free-Form Shapes
,”
Proceedings of SIGGRAPH 99
, pp.
393
400
.
38.
Wang
,
C. C. L.
, 2006, “
Bilateral Recovering of Sharp Edges on Feature-Insensitive Sampled Meshes
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
12
(
4
), pp.
629
639
.
39.
Wang
,
C. C. L.
, 2006, “
Incremental Reconstruction of Sharp Edges on Mesh Surfaces
,”
Comput.-Aided Des.
0010-4485,
38
(
6
), pp.
689
702
.
40.
Wang
,
C. C. L.
, 2006, “
Direct Extraction of Surface Meshes From Implicitly Represented Heterogeneous Volumes
,”
Comput.-Aided Des.
0010-4485,
39
(
1
), pp.
35
50
.
41.
Taubin
,
G.
, 1995, “
A Signal Processing Approach to Fair Surface Design
,”
Proceedings of SIGGRAPH 95
, pp.
351
358
.
42.
Desbrun
,
M.
,
Meyer
,
M.
,
Schröder
,
P.
, and
Barr
,
A. H.
, 1999, “
Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow
,”
Proceedings of SIGGRAPH 99
, pp.
317
324
.
43.
Bajaj
,
C. L.
, and
Xu
,
G.
,2003, “
Anisotropic Diffusion of Surfaces and Functions on Surfaces
,”
ACM Trans. Graphics
0730-0301,
22
(
1
), pp.
4
32
.
44.
Hildebrandt
,
K.
, and
Polthier
,
K.
, 2004, “
Anisotropic Filtering of Non-Linear Surface Features
,”
Comput. Graph. Forum
1067-7055,
23
(
3
), pp.
391
400
.
45.
Meyer
,
M.
,
Desbrun
,
M.
,
Schroder
,
P.
, and
Barr
,
A. H.
, 2002, “
Discrete Differential-Geometry Operators for Triangulated 2-Manifolds
,”
Proceeding of Visualization and Mathematics
.
46.
Jones
,
M. W.
, and
Satherley
,
R. A.
, 2001, “
Shape Representation Using Space Filled Sub-Voxel Distance Fields
,”
Proceedings of International Conference on Shape Modeling and Applications 2001
, pp.
316
325
.
47.
Surazhsky
,
V.
,
Alliez
,
P.
, and
Gotsman
,
C.
, 2003, “
Isotropic Remeshing of Surfaces: A Local Parameterization Approach
,”
Proceedings of the 12th International Meshing Roundtable
.
48.
Surazhsky
,
V.
, and
Gotsman
,
C.
, 2003, “
Explicit Surface Remeshing
,”
Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing
, pp.
20
30
.
49.
Vorsatz
,
J.
,
Rössl
,
C.
, and
Seidel
,
H.-P.
, 2003, “
Dynamic Remeshing and Applications
,”
Proceedings of Solid Modeling and Applications
, pp.
167
175
.
50.
Botsch
,
M.
, and
Kobbelt
,
L.
, 2004, “
A Remeshing Approach to Multiresolution Modeling
,”
Proceedings of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing
, pp.
185
192
.
51.
Hoppe
,
H.
,
DeRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
, and
Stuetzle
,
W.
, 1993, “
Mesh Optimization
,” Extended Technical Report No. UW CSE 1993-01-01 (http://research.microsoft.com/~hoppe/).http://research.microsoft.com/~hoppe/).
52.
Cohen-Steiner
,
D.
,
Alliez
,
P.
, and
Desbrun
,
M.
, 2004, “
Variational Shape Approximation
,”
ACM Trans. Graphics
0730-0301,
23
, pp.
905
914
.
53.
Lloyd
,
S.
, 1982, “
Least Square Quantization in PCM
,”
IEEE Trans. Inf. Theory
0018-9448,
28
, pp.
129
137
.
54.
Katz
,
S.
, and
Tal
,
A.
, 2003, “
Hierarchical Mesh Decomposition Using Fuzzy Clustering and Cuts
,”
ACM Trans. Graphics
0730-0301,
22
(
3
), pp.
954
961
.
55.
Cormen
,
T. H.
,
Leiserson
,
C. E.
,
Rivest
,
R. L.
, and
Stein
,
C.
, 2001,
Introduction to Algorithms
,
2nd ed.
,
MIT
.
56.
Smith
,
S. M.
, and
Brady
,
J. M.
, 1997, “
SUSAN: A New Approach to Low Level Image Processing
,”
Int. J. Comput. Vis.
0920-5691,
23
, pp.
45
78
.
57.
Tomasi
,
C.
, and
Manduchi
,
R.
, 1998, “
Bilateral Filtering for Gray and Color Images
,”
Proceedings of IEEE International Conference on Computer Vision
, pp.
836
846
.
58.
Barash
,
D.
, 2002, “
A Fundamental Relationship Between Bilateral Filtering, Adaptive Smoothing and the Nonlinear Diffusion Equation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
24
(
6
), pp.
844
847
.
59.
Black
,
M. J.
,
Sapiro
,
G.
,
Marimont
,
D. H.
, and
Heeger
,
D.
, 1998, “
Robust Anisotropic Diffusion
,”
IEEE Trans. Image Process.
1057-7149,
7
(
3
), pp.
421
432
.
60.
Fleishman
,
S.
,
Drori
,
I.
,
Cohen-Or
,
D.
, 2002, “
Bilateral Mesh Denoising
,”
ACM Trans. Graphics
0730-0301,
22
(
3
), pp.
950
953
.
61.
Jones
,
T. R.
,
Durand
,
F.
, and
Desbrun
,
M.
, 2003, “
Non-Iterative, Feature-Preserving Mesh Smoothing
,”
ACM Trans. Graphics
0730-0301,
22
(
3
), pp.
943
949
.
62.
Lee
,
L.-W.
, and
Wang
,
W.-P.
, 2005, “
Feature-Preserving Mesh Denoising Via Bilateral Normal Filtering
,”
Proceedings of the Ninth International Conference on Computer Aided Design and Computer Graphics
, pp.
275
280
.
63.
Taubin
,
G.
, 2001, “
Linear Anisotropic Mesh Filtering
,” IBM Research, Technical Report No. TR-RC2213.
You do not currently have access to this content.