Freeform deformation (FFD) is a well established technique for 3D animation applications, used to deform two—or three-dimensional geometrical entities. Over the past few years, FFD technique has aroused growing interest in several scientific communities. In this work, an extensive bibliographic survey of the FFD technique is initially introduced, in order to explore its capabilities in shape parametrization. Moreover, FFD technique is compared to the classical parametrization technique using B-spline curves, in the context of the airfoil design optimization problem, by performing inverse airfoil design tests, with a differential evolution algorithm to serve as the optimizer. The criterion of the comparison between the two techniques is the achieved accuracy in the approximation of the reference pressure distribution. Experiments are presented, comparing FFD to B-spline techniques under the same flow conditions, for various numbers of design variables. Sensitivity analysis is applied for providing further insight into the differences in the performance of the two techniques.

1.
Samareh
,
J. A.
, 2001, “
Survey of Shape Parametrization Techniques for High-Fidelity Multidisciplinary Shape Optimization
,”
AIAA J.
0001-1452,
39
(
5
), pp.
877
884
.
2.
Samareh
,
J. A.
, 1999, “
A Novel Shape Parametrization Approach
,” Report No. NASA-TM-1999-209116.
3.
Sarakinos
,
S. S.
,
Amoiralis
,
E.
, and
Nikolos
,
I. K.
, 2005, “
Exploring Freeform Deformation Capabilities in Aerodynamic Shape Parametrization
,”
CD Proceedings of the EUROCON 2005 International Conference on “Computer as a Tool
,
Belgrade, Serbia and Montenegro
, IEEE.
4.
Storn
,
R.
, and
Price
,
K.
, 1995, “
DE—A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Space
,” ICSI, Technical Report No. TR-95-012.
5.
Price
,
K. V.
,
Storn
,
R. M.
, and
Lampinen
,
J. A.
, 2005,
Differential Evolution a Practical Approach to Global Optimization
,
Springer-Verlag
,
Berlin
.
6.
Vicini
,
A.
, and
Quagliarella
,
Q.
, 1998, “
Airfoil and Wing Design Through Hybrid Optimization Strategies
,” AIAA Paper No. 98-2729.
7.
Oyama
,
A.
, and
Fujii
,
K.
, 2004, “
Airfoil Design Optimization for Airplane for Mars Exploration
,”
J-55, The Third China-Japan-Korea Joint Symposium on Optimization of Structual and Mechanical Systems, CJK-OSM3
,
Kanazawa, Ishikawa
.
8.
Nemec
,
M.
,
Zingg
,
D. W.
, and
Pulliam
,
T. H.
, 2004, “
Multipoint and Multi-Objective Aerodynamic Shape Optimization
,”
AIAA J.
0001-1452,
42
(
6
), pp.
1057
1065
.
9.
Secanell
,
M.
, and
Suleman
,
A.
, 2005, “
Numerical Evaluation of Optimization Algorithms for Low-Reynolds-Number Aerodynamic Shape Optimization
,”
AIAA J.
0001-1452,
43
(
10
), pp.
2262
2267
.
10.
Secanell
,
M.
, and
Suleman
,
A.
, 2006, “
Design of a Morphing Airfoil Using Aerodynamic Shape Optimization
,”
AIAA J.
0001-1452,
44
(
7
), pp.
1550
1562
.
11.
Makinen
,
R.
,
Neittaanmaki
,
P.
,
Periaux
,
J.
, and
Toivanen
,
J.
, 1998, “
A Genetic Algorithm for Multiobjective Design Optimization in Aerodynamics and Electromagnetics
,” in
Computational Fluid Dynamics ’98, Proceedings of the ECCOMAS 98 Conference
,
Athens, Greece, Wiley
,
K. D.
Papailiou
,
D.
Tsahalis
,
J.
Periaux
, and
D.
Knoerzer
, eds., Vol.
2
, pp.
418
422
.
12.
Marco
,
N.
,
Desideri
,
J. A.
, and
Lanteri
,
S.
, 1999, “
Multiobjective Optimization in CFD by Genetic Algorithms
,”
Institut National de Recherche en Informatique et en Automatique
, Rapport de recherché 3686.
13.
Fainekos
,
G. E.
, and
Giannakoglou
,
K. C.
, 2003, “
Inverse Design of Airfoils Based on a Novel Formulation of the Ant Colony Optimization Method
,”
Inverse Probl. Eng.
1068-2767,
11
(
1
), pp.
21
38
.
14.
Hacioglu
,
A.
, and
Ozkol
,
I.
, 2005, “
Inverse Airfoil Design by Using an Accelerated Genetic Algorithm via Distribution Strategies
,”
Inverse Problems in Science and Engineering
,
13
(
6
), pp.
563
579
.
15.
Hacioglu
,
A.
, 2007, “
Fast Evolutionary Algorithm for Airfoil Design via Neural Network
,”
AIAA J.
0001-1452,
45
(
9
), pp.
2196
2203
.
16.
Congedo
,
P. M.
,
Corre
,
C.
, and
Cinnella
,
P.
, 2007, “
Airfoil Shape Optimization for Transonic Flows Bethe-Zel’dovich-Thompson Fluids
,”
AIAA J.
0001-1452,
45
(
6
), pp.
1303
1316
.
17.
Song
,
W.
, and
Keane
,
A. J.
, 2004, “
A Study of Shape Parameterisation Methods for Airfoil Optimization
,”
Proceedings of the Tenth AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
.
18.
Painchaud-Ouellet
,
S.
,
Tribes
,
C.
,
Trépanier
,
J.-Y.
, and
Pelletier
,
D.
, 2006, “
Airfoil Shape Optimization Using a Nonuniform Rational B-Splines Parametrization Under Thickness Constraint
,”
AIAA J.
0001-1452,
44
(
10
), pp.
2170
2178
.
19.
Barrett
,
T. R.
,
Bressloff
,
N. W.
, and
Keane
,
A. J.
, 2006, “
Airfoil Shape Design and Optimization Using Multifidelity Analysis and Embedded Inverse Design
,”
AIAA J.
0001-1452,
44
(
9
), pp.
2051
2060
.
20.
Barr
,
A. H.
, 1984, “
Global and Local Deformation of Solid Primitives
,”
Comput. Graph.
0097-8930,
18
(
3
), pp.
21
30
.
21.
Sederberg
,
T. W.
, and
Parry
,
S. R.
, 1986, “
Free-Form Deformation of Solid Geometric Models
,”
Comput. Graph.
0097-8930,
20
(
4
), pp.
151
160
.
22.
Griessmaiur
,
J.
, and
Purgathofer
,
W.
, 1989, “
Deformation of Solids With Trivariate B-Splines
,”
Proceedings of the EUROGRAPHICS ’89 Conference
,
Elsevier Science
, pp.
137
148
.
23.
Coquillart
,
S.
, 1990, “
Extended Free-Form Deformation: A Sculpturing Tool for 3D Geometric Modeling
,”
Comput. Graph.
0097-8930,
24
(
4
), pp.
187
193
.
24.
Coquillart
,
S.
, and
Jancène
,
P.
, 1991, “
Animated Free-Form Deformation: An Interactive Animation Technique
,”
Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’91
,
ACM Press
,
New York, NY
, Vol.
25
(
4
), pp.
23
26
.
25.
Davis
,
O. R.
, and
Burton
,
R. P.
, 1991, “
Free-Form Deformation as an Interactive Modeling Tool
,”
J. Imaging Technol.
0747-3583,
17
(
4
), pp.
181
187
.
26.
Chang
,
Y. K.
, and
Rockwood
,
A. P.
, 1994, “
A Generalized de Casteljau Approach to 3D Free-Form Deformation
,”
Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ‘94
,
ACM Press
,
New York, NY
, pp.
257
260
.
27.
Lamousin
,
H. J.
, and
Waggenspack
,
W. N.
, 1994, “
NURBS-Based Free-Form Deformations
,”
IEEE Comput. Graphics Appl.
0272-1716,
14
(
6
), pp.
59
65
.
28.
MacCracken
,
R.
, and
Joy
,
K. I.
, 1996, “
Free-Form Deformations With Lattices of Arbitrary Topology
,”
Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ‘96
,
ACM Press
,
New York, NY
, pp.
181
188
.
29.
Faloutsos
,
P.
,
Van de Panne
,
M.
, and
Terzopoulos
,
D.
, 1997, “
Dynamic Free-Form Deformations for Animation Synthesis
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
3
(
3
), pp.
201
214
.
30.
Feng
,
J.
,
Heng
,
P.
, and
Wong
,
T.
, 1997, “
Accurate B-Spline Free-Form Deformation of Polygonal Objects
,”
Journal of Graphics Tools
,
3
(
3
), pp.
11
27
.
31.
Feng
,
J.
,
Ma
,
L.
, and
Peng
,
Q.
, 1999, “
A New Free-Form Deformation Through the Control of Parametric Surfaces
,”
Comput. Graph.
0097-8930,
20
(
4
), pp.
531
539
.
32.
Gain
,
J. E.
, and
Dodgson
,
N. A.
, 1999, “
Adaptive Refinement and Decimation Under Free-Form Deformation
,”
Proceedings of the EUROGRAPHICS UK ’99
,
Fitzwilliam College
,
Cambridge
, pp.
7
18
.
33.
Hirota
,
G.
,
Lin
,
M. C.
, and
Maheshwari
,
R.
, 1999, “
Fast Volume Preserving Free Form Deformation Using Multi-Level Optimization
,”
Proceedings of the ACM SMA 1999
,
New York
, pp.
234
245
.
34.
Chua
,
C.
, and
Neumann
,
U.
, 2000, “
Hardware-Accelerated Free-Form Deformation
,”
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, HWWS ’00
,
ACM Press
,
Switzerland
.
35.
Yoshizawa
,
S.
,
Belyaev
,
A. G.
, and
Seidel
,
H.
, 2002, “
A Simple Approach to Interactive Free-Form Shape Deformations
,”
Proceedings of the Tenth Pacific Conference on Computer Graphics and Applications
,
IEEE Computer Society
,
Washington
, pp.
471
474
.
36.
Ono
,
Y.
,
Chen
,
B.-Y.
,
Nishita
,
T.
, and
Feng
,
J.
, 2002, “
Free-Form Deformation With Automatically Generated Multiresolution Lattices
,”
Proceedings of the IEEE Cyberworlds 2002 Conference
, pp.
472
479
.
37.
Ilic
,
S.
, and
Fua
,
P.
, 2002, “
Using Dirichlet Free Form Deformation to Fit Deformable Models to Noisy 3-D Data
,”
Proceedings of the European Conference on Computer Vision
,
Copenhagen, Denmark
, LNCS 2351, pp.
704
717
.
38.
Kobayashi
,
K. G.
, and
Ootsubo
,
K.
, 2003, “
t-FFD: Free-Form Deformation by Using Triangular Mesh
,”
Proceedings of the Eighth ACM symposium on Solid Modeling and Applications
,
ACM Press
, pp.
226
234
.
39.
Hua
,
J.
, and
Qin
,
H.
, 2003, “
Free-Form Deformations via Sketching and Manipulating Scalar Fields
,”
Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications
,
ACM Press
,
Seattle, WA
, pp.
328
333
.
40.
Schein
,
S.
, and
Elber
,
G.
, 2004, “
Discontinuous Free Form Deformations
,”
Computer Graphics and Applications, Proceedings of the 12th Pacific Conference on Graphics
,
Seoul, Korea
, pp.
227
236
.
41.
Song
,
W.
, and
Yang
,
X.
, 2005, “
Free-Form Deformation With Weighted T-Spline
,”
The Visual Computer: International Journal of Computer Graphics
,
21
(
3
), pp.
139
151
.
42.
Ronzheimer
,
A.
, 2002, “
Post-Parameterization of Complex CAD-Based Aircraft-Shapes Using Freeform Deformation
,”
Proceedings of the Eighth International Conference on Numerical Grid Generation in Computational Field Simulations
,
Honolulu, HI
.
43.
Ronzheimer
,
A.
, 2004, “
Shape Parameterization Based on Freeform Deformation in Aerodynamic Design Optimization
,”
CD Proceedings of the ERCOFTAC Conference on Design Optimization: Methods and Applications
,
K. C.
Giannakoglou
and
W.
Haase
, eds.,
Athens, Greece
.
44.
Antreoli
,
M.
,
Janka
,
A.
, and
Désidéri
,
J. A.
, 2003, “
Free-Form-Deformation Parameterization for Multilevel 3D Shape Optimization in Aerodynamics
,” INRIA, Report No. 5019.
45.
Desideri
,
J. A.
, and
Janka
,
A.
, 2004, “
Multilevel Shape Parameterization for Aerodynamic Optimization: Application to Drag and Noise Reduction of Transonic/Supersonic Business Jet
,”
Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004
,
Jyväskylä, Finland
.
46.
Samareh
,
J. A.
, 2004, “
Aerodynamic Shape Optimization Based on Freeform Deformation
,” AIAA Paper No. 2004-4630.
47.
Chadwich
,
J. E.
,
Haumann
,
D. R.
, and
Parent
,
R. E.
, 1989, “
Layered Construction for Deformable Animated Characters
,”
ACM Computer Graphics, Siggraph ’89
, Vol.
23
(
3
), pp.
243
252
.
48.
Kalra
,
P.
,
Mangili
,
A.
,
Thalmann
,
N.
, and
Thalmann
,
D.
, 1992, “
Simulation of Facial Muscle Actions Based on Rational Free-Form Deformation
,”
EUROGRAPHICS ’92, Computer Graphics Forum
, Vol.
2
(
3
).
49.
Rueckert
,
D.
,
Sonoda
,
L. I.
,
Hayes
,
C.
,
Hill
,
D. L. G.
,
Leach
,
M. O.
, and
Hawkes
,
D. J.
, 1999, “
Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images
,”
IEEE Trans. Med. Imaging
0278-0062,
18
(
8
), pp.
712
721
.
50.
Lyakh
,
A. M.
, 2002, “
An Application of Free Form Deformation to Phytoplankton Cells Modeling
,”
Proceedings of the EWCG 18th European Workshop on Computational Geometry
,
Warszawa, Poland
.
51.
Abolhassani
,
N.
, and
Samani
,
A.
, 2005, “
Non-Rigid Registration Using Free-Form Deformation for Prostate Images
,”
Annual Meeting of the North American, Fuzzy Information Processing Society NAFIPS 2005
, pp.
51
54
.
52.
Tertois
,
A. L.
,
Frank
,
T.
, and
Mallet
,
J. L.
, 2005, “
Real-Time Tetrahedral Volume Editing Accounting for Discontinuities
,”
Proceedings of the Ninth International Conference on Computer Aided Design and Computer Graphics
,
IEEE, Hong Kong
.
53.
Zhao
,
Y.
,
Zhang
,
S.
, and
Chen
,
Y.
, 2005, “
Non-Rigid Registration Algorithm Based on Modally Controlled Free Form Deformation
,”
Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005
.
54.
Volino
,
P.
, and
Magnenat-Thalmann
,
N.
, 2006, “
Real-Time Animation of Complex Hairstyles
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
12
(
2
), pp.
131
142
.
55.
Piegl
,
L.
, and
Tiller
,
W.
, 1997,
The NURBS Book
,
Springer-Verlag
,
Berlin
.
56.
Patrikalakis
,
N. M.
, and
Maekawa
,
T.
, 2002,
Shape Interrogation for Computer Aided Design and Manufacturing
,
Springer-Verlag
,
Berlin
.
57.
Drela
,
M.
, 1989, “
XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils
,”
Proceedings of the Conference on Low Reynolds Number Airfoil Aerodynamics
,
University of Notre Dame
.
58.
Fan
,
H. Y.
,
Lampinen
,
J.
, and
Dulikravich
,
G. S.
, 2003, “
Improvements to Mutation Donor Formulation of Differential Evolution
,”
Proceedings of the EUROGEN 2003 Conference
,
Barcelona, Spain
.
59.
Marse
,
K.
, and
Roberts
,
S. D.
, 1983, “
Implementing a Portable FORTRAN Uniform (0, 1) Generator
,”
Simulation
0037-5497,
41
(
4
), pp.
135
139
.
This content is only available via PDF.
You do not currently have access to this content.