In this paper, a fast algorithm for the simulation of deformable objects composed of multiple components made of different materials is introduced. By using the boundary element method and considering individual components and their interfaces separately, a relationship between the unknown and known displacements is established. Based on this expression, a component-based condensation method can be applied. This reduces the size of the matrix to be inverted to depend only on the number of unknown displacements of the components with changing boundary condition. To speed up the construction of the required matrices, a maximal matrix method is proposed. By categorizing the changes in boundary conditions, three fast update strategies on matrix inverse are introduced. Based on the maximal matrix method and the matrix inverse update strategy, we define eight easily formed characteristic matrices, which enhance the computation speed further. The efficiency of the proposed method is demonstrated by a set of experimental results.

1.
Terzopoulos
,
D.
,
Platt
,
J.
,
Barr
,
A.
, and
Fleisher
,
K.
, 1987, “
Elastically Deformable Models
,”
Computer Graphics (SIGGRAPH’87)
, Vol.
21
, No.
4
, pp.
205
214
.
2.
Gourret
,
J. P.
,
Magnenant-Thailann
,
N.
, and
Thalmann
,
D.
, 1989, “
Simulation of Object and Human Skin Deformation in a Grasping Task
,”
Computer Graphics (SIGGRAPH’89)
, Vol.
23
, No.
3
, pp.
21
23
.
3.
Cotin
,
S.
,
Delingette
,
H.
, and
Ayache
,
N.
, 1999, “
A Hybrid Elastic Model allowing Real-Time Cutting, Deformations and Force-Feedback for Surgery Training and Simulation
,”
Proceedings of the Computer Animation
, pp.
26
28
.
4.
Debunne
,
G.
,
Desbrun
,
M.
,
Cani
,
M. P.
, and
Barr
,
A. H.
, 2001, “
Dynamic Real-Time Deformations Using Space & Time Adaptive Sampling
,”
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques
, pp.
31
36
.
5.
Hui
,
K. C.
, and
Wong
,
N. N.
, 2003, “
Hands on a Virtually Elastic Object
,”
Visual Comput.
0178-2789, Vol.
18
(
3
), pp.
150
163
.
6.
James
,
D. L.
, and
Pai
,
D. K.
, 1999, “
ArtDefo: Accurate Real Time Deformable Objects
,”
Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques
, pp.
65
72
.
7.
Capell
,
S.
,
Green
,
S.
,
Curless
,
B.
,
Duchamp
,
T.
, and
Popović
,
Z.
, 2002, “
A Multiresolution Framework for Dynamic Deformations
,”
Proceedings of the 2002 ACM SIGGRAPH∕Eurographics
Symposium on Computer Animation
, pp.
21
22
.
8.
Crotty
,
J. M.
, 1982, “
A Block Equation Solver for Large Unsymmetric Matrices Arising in the Boundary Integral Equation Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
18
(
7
), pp.
997
1017
.
9.
Kane
,
J. H.
,
Kumar
,
B. L. K.
, and
Gallagher
,
R. H.
, 1990, “
Boundary Element Iterative Reanalysis Techniques for Continuum Structures
,”
J. Eng. Mech.
0733-9399,
116
, pp.
2293
2309
.
10.
Kane
,
J. H.
, and
Saigal
,
S.
, 1988, “
Design Sensitivity Analysis of Boundary Element Substructures
,”
Proceedings of Second NASA∕Air Force Symposium on Recent Experience in Multi-Displinary Analysis and Optimization
, Paper No. NASA CP-3031, Vol.
2
, pp.
777
799
.
11.
Li
,
G.
,
Paulino
,
G. H.
, and
Aluru
,
N. R.
, 2003, “
Coupling of the Mesh-free Finite Cloud Method With the Boundary Element Method: a Collocation Approach
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
2355
2375
.
12.
Zhu
,
T.
, and
Atluri
,
S. N.
, 1998, “
A Modified Collocation Method and a Penalty Formulation for Enforcing the Essential Boundary Conditions in the Element Free Galerkin Method
,”
Computational Mechanics
,
Springer-Verlag
,
Berlin
, Vol.
21
, pp.
211
222
.
13.
Layton
,
J. B.
,
Ganguly
,
S.
,
Balakrishna
,
C.
, and
Kane
,
I. J.
, 1997, “
A Symmetric Galerkin Multi-Zone Boundary Element Formulation
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
2913
2931
.
14.
Gray
,
L. J.
, and
Paulino
,
G. H.
, 1997, “
Symmetric Galerkin Boundary Integral Formulation for Interface and Multi-Zone Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
3085
3101
.
15.
Rezayat
,
M.
, 1990, “
A Novel Approach for Fast Decomposition of Boundary Element Matrices
,” in
Advances in Boundary Element Method in Japan and USA, Topics in Engineering
,
M.
Tanaka
,
C. A.
Brebbia
, and
R.
Shaw
, eds., Vol. 7, pp.
389
401
.
16.
Kane
,
I. H.
,
Keyes
,
D. E.
, and
Guru Prasad
,
K.
, 1991, “
Iterative Solution Techniques in Boundary Element Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
31
, pp.
1511
1536
.
17.
Kane
,
J. H.
, and
Saigal
,
S.
, 1990, “
An Arbitrary Multi-Zone Condensation Technique for Boundary Element Design Sensitivity Analysis
,”
AIAA J.
0001-1452,
28
, pp.
1277
1284
.
18.
James
,
D. L.
, and
Pai
,
D. K.
, 2002, “
Real Time Simulation of Multizone Elastokinematic Models
,”
Proceedings of the 2002 IEEEE International Conference on Robotics & Automation
, pp.
927
932
.
19.
Bro-Nielsen
,
M.
, and
Cotin
,
S.
, 1996, “
Real-Time Volumetric Deformable Models for Surgery Simulation Using Finite Elements and Condensation
,”
Proceedings of Eurographics 96—Computer Graphics Forum
, Vol.
15
, pp.
57
66
.
20.
Cotin
,
S.
,
Delingette
,
H.
, and
Ayache
,
N.
, 1999, “
Real-Time Elastic Deformations of Soft Tissues for Surgery Simulation
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
5
, pp.
62
73
.
21.
Hager
,
W. W.
, 1989, “
Updating the Inverse of a Matrix
,”
SIAM Rev.
0036-1445,
31
(
2
), pp.
221
239
.
22.
Duncan
,
W. J.
, 1944, “
Some Devices for the Solution of Large sets of Simultaneous Linear Equations
,”
Philos. Mag.
0031-8086,
35
, pp.
660
670
.
You do not currently have access to this content.