Surface roughness is a key parameter for determining the quality of machined parts. A graphical model for the calculation of quantitative data affecting surface roughness of machined surfaces was developed. The model allows the determination of the accurate machined surface in cloud of points form retrieved from the visualization system Z buffer in a three dimensional graphics environment developed in OPENGL. Critical quantitative parameters for surface roughness, such as RaRyRtiRz, and mean line, are determined from this topomorphy. The results together with the operations are visualized in a virtual machine shop environment developed in a commercial development toolkit.

1.
Ko
,
J. H.
,
Yun
,
W. S.
, and
Cho
,
D. W.
, 2003, “
Off-Line Feed Rate Scheduling Using Virtual CNC Based on an Evaluation of Cutting Performance
,”
CAD
0010-4485,
35
, pp.
383
393
.
2.
Zaman
,
M. T.
,
Kumar
,
A. S.
,
Rahman
,
M.
, and
Sreeram
,
S.
, 2006, “
A Three-Dimensional Analytical Cutting Force Model for Microend Milling Operation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
353
366
.
3.
Huang
,
Y.
, and
Oliver
,
J.
, 1994, “
NC Milling Error Assessment and Tool Path Correction
,”
International Conference on Computer Graphics and Interactive Techniques
,
Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques
, pp.
287
294
.
4.
Qui
,
Z. M.
,
Chen
,
Y. P.
,
Zhou
,
Z. D.
,
Ong
,
S. K.
, and
Nee
,
A. Y. C.
, 2002, “
An Internet Based Virtual CNC Milling System
,”
Adv. Manuf. Technol.
,
20
, pp.
20
30
.
5.
Qui
,
Z. M.
,
Chen
,
Y. P.
,
Zhou
,
Z. D.
,
Ong
,
S. K.
, and
Nee
,
A. Y. C.
, 2001, “
Multi User NC Machining Simulation Over the Web
,”
Adv. Manuf. Technol.
,
18
, pp.
1
6
.
6.
Antoniadis
,
A.
,
Savakis
,
C.
,
Bilalis
,
N.
, and
Balouksis
,
A.
, 2003, “
Prediction of Surface Topomorphy and Roughness In Ball End Milling
,”
Adv. Manuf. Technol.
,
21
, pp.
965
971
.
7.
Engin
,
S.
, and
Altintas
,
Y.
, 2001, “
Mechanics and Dynamics of General Milling Cutters. Part I: Helical End Mills
,”
Int. J. Mach. Tools Manuf.
0890-6955
41
, pp.
2195
2212
.
8.
Engin
,
S.
, and
Altintas
,
Y.
, 2001, “
Mechanics and Dynamics of General Milling Cutters Part II: Inserted Cutters
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
, pp.
2213
2231
.
9.
Liu
,
X. W.
, and
Cheng
,
K.
, 2005, “
Modeling the Machining Dynamics in Peripheral Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
1301
1320
.
10.
Lou
,
M. S.
,
Chen
,
J. C.
, and
Li
,
C. M.
, 1999, “
Surface Roughness Prediction Technique for CNC End Milling
,”
Industrial Technology
,
15
(
1
), pp.
1
6
.
11.
Alauddin
,
M.
,
Baradie
,
M. A.
, and
Hashmi
,
M. S.
, 1995, “
Computer Aided Analysis of a Surface Roughness Model for End Milling
,”
J. Mater. Process. Technol.
0924-0136,
55
, pp.
123
127
.
12.
Wang
,
M. Y.
, and
Chang
,
H. Y.
, 2003, “
Experimental Study of Surface Roughness in Slot End Milling AL2014-T6
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
, pp.
51
57
.
13.
Benardos
,
P. G.
, and
Vosniakos
,
G. C.
, 2002, “
Prediction of Surface Roughness in CNC Face Milling Using Neural Networks and Taguchi’s Design of Experiments
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
18
(
5–6
), pp.
343
354
.
14.
Tseng
,
B.
,
Kwon
,
Y.
, and
Ertekin
,
R.
, 2005, “
Feature Based Rule Induction in Machining Operation Using Rough Set Theory for Quality Assurance
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
21
, pp.
559
567
.
15.
Baek
,
D. K.
,
Ko
,
T. J.
, and
Kim
,
H. S.
, 2001, “
Optimization of Feedrate in a Face Milling Operation Using a Surface Roughness Model
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
, pp.
451
462
.
16.
Kim
,
G. M.
,
Cho
,
P. J.
, and
Chu
,
C. N.
, 2000, “
Cutting Force Prediction of Sculptured Surface Ball-End Milling Using Z-Map
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
(
2
), pp.
277
291
.
17.
Roth
,
D.
,
Ismail
,
F.
, and
Bedi
,
S.
, 2003, “
Mechanistic Modeling of the Milling Process Using an Adaptive Depth Buffer
,”
CAD
0010-4485,
35
(
14
), pp.
1287
1303
.
18.
Tsai
,
Y. H.
,
Chen
,
J. C.
, and
Lou
,
S. J.
, 1999, “
In-Process Surface Recognition System Based on Neural Networks in End Milling Cutting Operations
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
(
4
), pp.
583
605
.
20.
Oberg
,
E.
,
Jones
,
F. D.
,
Horton
,
H. L.
, and
Ryffell
,
H. H.
,
Machinery’s Handbook
,
26th ed.
, ANSI/ASME B46.1-1995 standard,
Industrial Press
,
New York
, ISBN 978–0–8311–2666–7.
21.
Thomas
,
R. Tom
, 1999,
Rough Surfaces
,
2nd ed.
,
Imperial College Press
,
London
.
23.
Bilalis
,
N.
,
Petousis
,
M.
, and
Antoniadis
,
A.
, 2007, “
Surface Roughness Parameters Determination Model in Machining With the Use of Design and Visualization Technologies
,”
Presented at the Third International Conference on Advanced Research in Virtual and Rapid Prototyping
.
You do not currently have access to this content.