A point cloud data set, a dense set of discrete coordinate points scanned or sampled from the surface of a 3D physical object or design model, is emerging as a new representation format for geometric modeling. This paper presents a new method to detect tangential discontinuities in point cloud data. The method introduces an original criterion, named as incompatibility, to quantify the magnitude of shape change in the vicinity of a data point. The introduced criterion is unique since in smooth regions of the underlying surface where shape change around a data point is small, the calculated incompatibilities tend to cluster around small values. At points close to tangential discontinuities, the calculated incompatibilities become relatively large. By modeling the incompatibilities of points in smooth regions following a statistical distribution, the proposed method identifies tangential discontinuities as those points whose incompatibilities are considered outliers with respect to the distribution. As the categorization of outliers is in effect independent of the underlying surface shape and sampling conditions of the data points, a threshold can be automatically determined via a generic procedure and used to identify tangential discontinuities. The effectiveness of the proposed method is demonstrated through many case studies using both simulated and practical point cloud data sets.

1.
Hoppe
,
H.
,
DeRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
, and
Stuetzle
,
W.
, 1992, “
Surface Reconstruction From Unorganized Points
,”
Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’92)
, pp.
71
78
.
2.
Amenta
,
N.
,
Bern
,
M.
, and
Kamvysselis
,
M.
, 1998, “
A New Voronoi-Based Surface Reconstruction Algorithm
,”
Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’98)
, pp.
415
421
.
3.
Srinivasan
,
V.
, 2007, “
Computational Metrology for the Design and Manufacture of Product Geometry: A Classification and Synthesis
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
(
1
), pp.
3
9
.
4.
Portman
,
V.
,
Shuster
,
V.
,
Rubenchik
,
Y.
, and
Shneor
,
Y.
, 2007, “
Substitute Geometry of the Features of Size: Applications to Multidimensional Features
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
(
1
), pp.
52
65
.
5.
Mehdi-Souzani
,
C.
,
Thiebaut
,
F.
, and
Lartigue
,
C.
, 2006, “
Scan Planning Strategy for a General Digitized Surface
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
(
4
), pp.
331
339
.
6.
Miropolsky
,
A.
, and
Fischer
,
A.
, 2006, “
Sharp Feature Detection for Inspection
,”
Int. J. Shape Model.
0218-6543,
12
(
2
), pp.
143
158
.
7.
Schreve
,
K.
,
Goussard
,
C. L.
,
Basson
,
A. H.
, and
Dimitrov
,
D.
, 2006, “
Interactive Feature Modeling for Reverse Engineering
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
(
4
), pp.
422
424
.
8.
Fan
,
T.-J.
,
Medioni
,
G.
, and
Nevatia
,
R.
, 1987, “
Segmented Descriptions of 3-D Surfaces
,”
IEEE J. Rob. Autom.
0882-4967,
3
(
6
), pp.
527
538
.
9.
Yang
,
M.
, and
Lee
,
E.
, 1999, “
Segmentation of Measured Point Data Using a Parametric Quadric Surface Approximation
,”
Comput.-Aided Des.
0010-4485,
31
(
7
), pp.
449
457
.
10.
Huang
,
J.
, and
Menq
,
C.-H.
, 2001, “
Automatic Data Segmentation for Geometric Feature Extraction from Unorganized 3-D Coordinate Points
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
3
), pp.
268
279
.
11.
Milroy
,
M. J.
,
Bradley
,
C.
, and
Vickers
,
G. W.
, 1997, “
Segmentation of a Wrap-Around Model Using an Active Contour
,”
Comput.-Aided Des.
0010-4485,
29
(
4
), pp.
299
320
.
12.
Benko
,
P.
,
Martin
,
R. R.
, and
Varady
,
T.
, 2001, “
Algorithms for Reverse Engineering Boundary Representation Models
,”
Comput.-Aided Des.
0010-4485,
33
(
11
), pp.
839
851
.
13.
Benko
,
P.
, and
Varady
,
T.
, 2004, “
Segmentation Methods for Smooth Point Regions of Conventional Engineering Objects
,”
Comput.-Aided Des.
0010-4485,
36
(
6
), pp.
511
523
.
14.
Woo
,
H.
,
Kang
,
E.
,
Wang
,
S.
, and
Lee
,
K. H.
, 2002, “
A New Segmentation Method for Point Cloud Data
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
(
2
), pp.
167
178
.
15.
Kim
,
H.-C.
,
Hur
,
S.-M.
, and
Lee
,
S.-H.
, 2002, “
Segmentation of the Measured Point Data in Reverse Engineering
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
20
(
8
), pp.
571
580
.
16.
Razdan
,
A.
, and
Bae
,
M.
, 2003, “
A Hybrid Approach to Feature Segmentation of Triangle Meshes
,”
Comput.-Aided Des.
0010-4485,
35
(
9
), pp.
783
789
.
17.
OuYang
,
D.
, and
Feng
,
H. Y.
, 2005, “
On the Normal Vector Estimation for Point Cloud Data from Smooth Surfaces
,”
Comput.-Aided Des.
0010-4485,
37
(
10
), pp.
1071
1079
.
18.
do Carmo
,
M. P.
, 1976,
Differential Geometry of Curves and Surfaces
,
Prentice-Hall
,
Englewood Cliffs, NJ
, Chap. 1, p.
27
.
19.
Evans
,
M.
,
Hastings
,
N.
, and
Peacock
,
B.
, 2000,
Statistical Distributions
,
3rd ed.
,
Wiley-Interscience
,
New York
, Chap. 19, p.
98
.
20.
Kimber
,
A. C.
, 1983, “
Trimming in Gamma Samples
,”
Appl. Stat.
0285-0370,
32
(
1
), pp.
7
14
.
21.
Kimball
,
B. F.
, 1960, “
On the Choice of Plotting Positions on Probability Paper
,”
J. Am. Stat. Assoc.
0003-1291,
55
(
291
), pp.
546
560
.
22.
Wilk
,
M. B.
,
Gnanadesikan
,
R.
, and
Huyett
,
M. J.
, 1962, “
Estimation of Parameters of the Gamma Distribution Using Order Statistics
,”
Biometrika
0006-3444,
49
,(
3/4
), pp.
525
545
.
23.
Kale
,
B. K.
, 1976, “
Detection of Outliers
,”
Stud. Sci. Educ.
0305-7267,
38
(
4
), pp.
356
363
.
24.
Shapiro
,
S.
, 1998, “
Distribution Assessment
,”
Order Statistics: Applications
,
N.
Balakrishnan
and
C. R.
Rao
, eds.,
Elsevier Science
,
Amsterdam
, pp.
475
494
.
25.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in C: The Art of Scientific Computing
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
, Chap. 9.
26.
Brent
,
R. P.
, 1973,
Algorithms for Minimization Without Derivatives
,
Prentice-Hall
,
Englewood Cliffs, NJ
, Chap. 4.
You do not currently have access to this content.